{"title":"Perspective for Drug Discovery Targeting SARS Coronavirus Methyltransferases: Function, Structure and Inhibition.","authors":"Xin Li, Yongcheng Song","doi":"10.1021/acs.jmedchem.4c01749","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and caused a catastrophic pandemic. It has infected billions of people worldwide with >6 million deaths. With expedited development of effective vaccines and antiviral drugs, there have been significantly reduced SARS-CoV-2 infections and associated mortalities and morbidities. The virus is closely related to SARS-CoV, which emerged in 2003 and infected several thousand people with a higher mortality rate of ∼10%. Because of continued viral evolution and drug-induced resistance, as well as the possibility of a new coronavirus in the future, studies for new therapies are needed. The viral methyltransferases play critical roles in SARS coronavirus replication and are therefore promising drug targets. This review summarizes the function, structure and inhibition of methyltransferases of SARS-CoV-2 and SARS-CoV. Challenges and perspectives of targeting the viral methyltransferases to treat viral infections are discussed.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01749","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and caused a catastrophic pandemic. It has infected billions of people worldwide with >6 million deaths. With expedited development of effective vaccines and antiviral drugs, there have been significantly reduced SARS-CoV-2 infections and associated mortalities and morbidities. The virus is closely related to SARS-CoV, which emerged in 2003 and infected several thousand people with a higher mortality rate of ∼10%. Because of continued viral evolution and drug-induced resistance, as well as the possibility of a new coronavirus in the future, studies for new therapies are needed. The viral methyltransferases play critical roles in SARS coronavirus replication and are therefore promising drug targets. This review summarizes the function, structure and inhibition of methyltransferases of SARS-CoV-2 and SARS-CoV. Challenges and perspectives of targeting the viral methyltransferases to treat viral infections are discussed.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.