Long term durability of Tc-bulk and Tc-coatings in various environmental conditions.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-30 DOI:10.1080/08927014.2024.2413633
Nadezhda M Popova, Mikhail A Volkov, Alexey V Safonov, Oleg E Panfilov, Konstantin E German
{"title":"Long term durability of Tc-bulk and Tc-coatings in various environmental conditions.","authors":"Nadezhda M Popova, Mikhail A Volkov, Alexey V Safonov, Oleg E Panfilov, Konstantin E German","doi":"10.1080/08927014.2024.2413633","DOIUrl":null,"url":null,"abstract":"<p><p>Technetium metal is renowned for its inertness in environmental conditions, rendering it an optimal candidate for use as a container material for high-level radioactive waste. Alternatively, thin technetium electroplated coatings can be employed to prevent corrosion of steel containers and the subsequent biofouling that may result. The utilization of metallic technetium in the design of containers for radioactive waste in deep burial may be promising from two perspectives: firstly, in terms of increasing their stability, and secondly, in terms of the utilization of technetium, which is a macrocomponent of radioactive waste. In this study, the resilience of the metal technetium and its two derivative coatings (amorphous and crystalline) was assessed under various conditions, including exposure to fresh groundwater and seawater. The multifunctional strain <i>Shewanella xiamenensis</i> DCB-2-1, known for its ability to enzymatically reduce pertechnetate ions, was used to investigate the possibility of microbial biofouling of metallic technetium. Laboratory experiments have demonstrated that amorphous electrodeposited technetium is more susceptible to oxidation processes compared to its crystalline counterpart. Ultimately, the most durable form of technetium was metal foil. The potential for biofouling on Tc surfaces is largely attributed to the diverse nature of the specimens' surface. Research conducted in the Barents Sea has revealed that the accumulation of iron, calcium, and magnesium mineral phases within the microbial biofilm may shield beta radiation, resulting in the establishment of macro-fouling (<i>Balanus</i> and <i>Mutilus</i>).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2413633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Technetium metal is renowned for its inertness in environmental conditions, rendering it an optimal candidate for use as a container material for high-level radioactive waste. Alternatively, thin technetium electroplated coatings can be employed to prevent corrosion of steel containers and the subsequent biofouling that may result. The utilization of metallic technetium in the design of containers for radioactive waste in deep burial may be promising from two perspectives: firstly, in terms of increasing their stability, and secondly, in terms of the utilization of technetium, which is a macrocomponent of radioactive waste. In this study, the resilience of the metal technetium and its two derivative coatings (amorphous and crystalline) was assessed under various conditions, including exposure to fresh groundwater and seawater. The multifunctional strain Shewanella xiamenensis DCB-2-1, known for its ability to enzymatically reduce pertechnetate ions, was used to investigate the possibility of microbial biofouling of metallic technetium. Laboratory experiments have demonstrated that amorphous electrodeposited technetium is more susceptible to oxidation processes compared to its crystalline counterpart. Ultimately, the most durable form of technetium was metal foil. The potential for biofouling on Tc surfaces is largely attributed to the diverse nature of the specimens' surface. Research conducted in the Barents Sea has revealed that the accumulation of iron, calcium, and magnesium mineral phases within the microbial biofilm may shield beta radiation, resulting in the establishment of macro-fouling (Balanus and Mutilus).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锝包体和锝涂层在各种环境条件下的长期耐久性。
锝金属因其在环境条件下的惰性而闻名,因此是用作高放射性废物容器材料的最佳候选材料。另外,还可以使用薄薄的电镀锝涂层来防止钢制容器的腐蚀以及随后可能产生的生物污垢。从两个角度来看,在设计深埋放射性废物的容器时使用金属锝可能很有前景:首先,可以提高容器的稳定性;其次,可以利用放射性废物的主要成分锝。本研究评估了金属锝及其两种衍生物涂层(无定形涂层和晶体涂层)在各种条件下(包括暴露于淡水和海水中)的恢复能力。研究人员利用以酶还原过硫酸根离子能力而闻名的多功能菌株厦门雪旺氏菌(Shewanella xiamenensis DCB-2-1)来研究微生物生物污损金属锝的可能性。实验室实验证明,与结晶锝相比,无定形电沉积锝更容易受到氧化过程的影响。最终,最耐用的锝形式是金属箔。锝表面可能出现生物污损,这在很大程度上归因于试样表面的多样性。在巴伦支海进行的研究表明,微生物生物膜中铁、钙和镁矿物相的积累可能会屏蔽β辐射,从而形成大污点(Balanus 和 Mutilus)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1