Reclassification of the first Bacillus tropicus phage calls for reclassification of other Bacillus temperate phages previously designated as plasmids.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2024-10-30 DOI:10.1186/s12864-024-10937-4
Ridwaan Nazeer Milase, Johnson Lin, Nontobeko E Mvubu, Nokulunga Hlengwa
{"title":"Reclassification of the first Bacillus tropicus phage calls for reclassification of other Bacillus temperate phages previously designated as plasmids.","authors":"Ridwaan Nazeer Milase, Johnson Lin, Nontobeko E Mvubu, Nokulunga Hlengwa","doi":"10.1186/s12864-024-10937-4","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus tropicus is a recently identified subspecies of the Bacillus cereus group of bacteria that have been shown to possess genes associated with antimicrobial resistance (AMR) and identified as the causative agent for anthrax-like disease in Chinese soft-shelled turtles. In addition, B. tropicus has demonstrated great potential in the fields of bioremediation and bioconversion. This article describes the comparative genomics of a Bacillus phage vB_Btc-RBClinn15 (referred to as RBClin15) infecting the recently identified B. tropicus AOA-CPS1. RBClin15 is a temperate phage with a putative parABS partitioning system as well as an arbitrium system, which are presumed to enable extrachromosomal genome maintenance and regulate the lysis/lysogeny switch, respectively. The temperate phage RBClin15 has been sequenced however, was erroneously deposited as a plasmid in the NCBI GenBank database. A BLASTn search against the GenBank database using the whole genome sequence of RBClin15 revealed seven other putative temperate phages that were also deposited as plasmids in the database. Comparative genomic analyses shows that RBClin15 shares between 87 and 92% average nucleotide identity (ANI) with the seven temperate phages from the GenBank database. All together RBClin15 and the seven putative temperate phages share common genome arrangements and < 29% protein homologs with the closest phages, including 0105phi7-2. A phylogenomic tree and proteome-based phylogenetic tree analysis showed that RBClin15 and the seven temperate phages formed a separate branch from the closest phage, 0105phi7-2. In addition, the intergenomic similarity between RBClin15 and its closely related phages ranged between 0.3 and 47.7%. Collectively, based on the phylogenetic, and comparative genomic analyses, we propose three new species which will include RBClin15 and the seven temperate phages in the newly proposed genus Theosmithvirus under Caudoviricetes.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10937-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacillus tropicus is a recently identified subspecies of the Bacillus cereus group of bacteria that have been shown to possess genes associated with antimicrobial resistance (AMR) and identified as the causative agent for anthrax-like disease in Chinese soft-shelled turtles. In addition, B. tropicus has demonstrated great potential in the fields of bioremediation and bioconversion. This article describes the comparative genomics of a Bacillus phage vB_Btc-RBClinn15 (referred to as RBClin15) infecting the recently identified B. tropicus AOA-CPS1. RBClin15 is a temperate phage with a putative parABS partitioning system as well as an arbitrium system, which are presumed to enable extrachromosomal genome maintenance and regulate the lysis/lysogeny switch, respectively. The temperate phage RBClin15 has been sequenced however, was erroneously deposited as a plasmid in the NCBI GenBank database. A BLASTn search against the GenBank database using the whole genome sequence of RBClin15 revealed seven other putative temperate phages that were also deposited as plasmids in the database. Comparative genomic analyses shows that RBClin15 shares between 87 and 92% average nucleotide identity (ANI) with the seven temperate phages from the GenBank database. All together RBClin15 and the seven putative temperate phages share common genome arrangements and < 29% protein homologs with the closest phages, including 0105phi7-2. A phylogenomic tree and proteome-based phylogenetic tree analysis showed that RBClin15 and the seven temperate phages formed a separate branch from the closest phage, 0105phi7-2. In addition, the intergenomic similarity between RBClin15 and its closely related phages ranged between 0.3 and 47.7%. Collectively, based on the phylogenetic, and comparative genomic analyses, we propose three new species which will include RBClin15 and the seven temperate phages in the newly proposed genus Theosmithvirus under Caudoviricetes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对第一种热带芽孢杆菌噬菌体进行重新分类,要求对以前被指定为质粒的其他温带芽孢杆菌噬菌体进行重新分类。
热带芽孢杆菌(Bacillus tropicus)是最近发现的蜡样芽孢杆菌(Bacillus cereus)的一个亚种,已被证明具有抗菌药耐药性(AMR)相关基因,并被确定为中华鳖炭疽类疾病的致病菌。此外,B. tropicus 在生物修复和生物转化领域也表现出巨大的潜力。本文描述了感染最近发现的滋养芽孢杆菌 AOA-CPS1 的芽孢杆菌噬菌体 vB_Btc-RBClinn15(简称 RBClin15)的比较基因组学。RBClin15 是一种温带噬菌体,具有假定的 parABS 分配系统和仲裁系统,据推测这两个系统可分别实现染色体外基因组的维持和调节裂解/溶解转换。温带噬菌体 RBClin15 已被测序,但被错误地作为质粒存入 NCBI GenBank 数据库。利用 RBClin15 的全基因组序列对 GenBank 数据库进行 BLASTn 搜索,发现了其他 7 个推测的温带噬菌体,它们也作为质粒存入了数据库。基因组比较分析表明,RBClin15 与 GenBank 数据库中的七种温带噬菌体的平均核苷酸同一性(ANI)介于 87% 与 92% 之间。总之,RBClin15 与这七种推定的温带噬菌体有着共同的基因组排列和基因组结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Transcriptome analysis identifies the NR4A subfamily involved in the alleviating effect of folic acid on mastitis induced by high concentration of Staphylococcus aureus lipoteichoic acid. A comprehensive analysis of the defense responses of Odontotermes formosanus (Shiraki) provides insights into the changes during Serratia marcescens infection. An INDEL genomic approach to explore population diversity of phytoplankton. Epigenetic dynamics of partially methylated domains in human placenta and trophoblast stem cells. Genetic diversity assessment of cucumber landraces using molecular signatures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1