CacPred: a cascaded convolutional neural network for TF-DNA binding prediction.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-03-18 DOI:10.1186/s12864-025-11399-y
Shuangquan Zhang, Anjun Ma, Xuping Xie, Zhichao Lian, Yan Wang
{"title":"CacPred: a cascaded convolutional neural network for TF-DNA binding prediction.","authors":"Shuangquan Zhang, Anjun Ma, Xuping Xie, Zhichao Lian, Yan Wang","doi":"10.1186/s12864-025-11399-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transcription factors (TFs) regulate the genes' expression by binding to DNA sequences. Aligned TFBSs of the same TF are seen as cis-regulatory motifs, and substantial computational efforts have been invested to find motifs. In recent years, convolutional neural networks (CNNs) have succeeded in TF-DNA binding prediction, but existing DL methods' accuracy needs to be improved and convolution function in TF-DNA binding prediction should be further explored.</p><p><strong>Results: </strong>We develop a cascaded convolutional neural network model named CacPred to predict TF-DNA binding on 790 Chromatin immunoprecipitation-sequencing (ChIP-seq) datasets and seven ChIP-nexus (chromatin immunoprecipitation experiments with nucleotide resolution through exonuclease, unique barcode, and single ligation) datasets. We compare CacPred to six existing DL models across nine standard evaluation metrics. Our results indicate that CacPred outperforms all comparison models for TF-DNA binding prediction, and the average accuracy (ACC), matthews correlation coefficient (MCC), and the area of eight metrics radar (AEMR) are improved by 3.3%, 9.2%, and 6.4% on 790 ChIP-seq datasets. Meanwhile, CacPred improves the average ACC, MCC, and AEMR of 5.5%, 16.8%, and 12.9% on seven ChIP-nexus datasets. To explain the proposed method, motifs are used to show features CacPred learned. In light of the results, CacPred can find some significant motifs from input sequences.</p><p><strong>Conclusions: </strong>This paper indicates that CacPred performs better than existing models on ChIP-seq data. Seven ChIP-nexus datasets are also analyzed, and they coincide with results that our proposed method performs the best on ChIP-seq data. CacPred only is equipped with the convolutional algorithm, demonstrating that pooling processing of the existing models leads to losing some sequence information. Some significant motifs are found, showing that CacPred can learn features from input sequences. In this study, we demonstrate that CacPred is an effective and feasible model for predicting TF-DNA binding. CacPred is freely available at https://github.com/zhangsq06/CacPred .</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 Suppl 2","pages":"264"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11399-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Transcription factors (TFs) regulate the genes' expression by binding to DNA sequences. Aligned TFBSs of the same TF are seen as cis-regulatory motifs, and substantial computational efforts have been invested to find motifs. In recent years, convolutional neural networks (CNNs) have succeeded in TF-DNA binding prediction, but existing DL methods' accuracy needs to be improved and convolution function in TF-DNA binding prediction should be further explored.

Results: We develop a cascaded convolutional neural network model named CacPred to predict TF-DNA binding on 790 Chromatin immunoprecipitation-sequencing (ChIP-seq) datasets and seven ChIP-nexus (chromatin immunoprecipitation experiments with nucleotide resolution through exonuclease, unique barcode, and single ligation) datasets. We compare CacPred to six existing DL models across nine standard evaluation metrics. Our results indicate that CacPred outperforms all comparison models for TF-DNA binding prediction, and the average accuracy (ACC), matthews correlation coefficient (MCC), and the area of eight metrics radar (AEMR) are improved by 3.3%, 9.2%, and 6.4% on 790 ChIP-seq datasets. Meanwhile, CacPred improves the average ACC, MCC, and AEMR of 5.5%, 16.8%, and 12.9% on seven ChIP-nexus datasets. To explain the proposed method, motifs are used to show features CacPred learned. In light of the results, CacPred can find some significant motifs from input sequences.

Conclusions: This paper indicates that CacPred performs better than existing models on ChIP-seq data. Seven ChIP-nexus datasets are also analyzed, and they coincide with results that our proposed method performs the best on ChIP-seq data. CacPred only is equipped with the convolutional algorithm, demonstrating that pooling processing of the existing models leads to losing some sequence information. Some significant motifs are found, showing that CacPred can learn features from input sequences. In this study, we demonstrate that CacPred is an effective and feasible model for predicting TF-DNA binding. CacPred is freely available at https://github.com/zhangsq06/CacPred .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
An mRNA expression atlas for the duck with public RNA-seq datasets. CacPred: a cascaded convolutional neural network for TF-DNA binding prediction. Large indel detection in region-based phased diploid assemblies from linked-reads. Genomic alterations in Bacteroides fragilis favor adaptation in colorectal cancer microenvironment. Multi-omic latent variable data integration reveals multicellular structure pathways associated with resistance to tuberculin skin test (TST)/interferon gamma release assay (IGRA) conversion in Uganda.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1