Valentina Ramponi, Laia Richart, Marta Kovatcheva, Camille Stephan-Otto Attolini, Jordi Capellades, Alice E Lord, Oscar Yanes, Gabriella Ficz, Manuel Serrano
{"title":"H4K20me3-Mediated Repression of Inflammatory Genes is a Characteristic and Targetable Vulnerability of Persister Cancer Cells.","authors":"Valentina Ramponi, Laia Richart, Marta Kovatcheva, Camille Stephan-Otto Attolini, Jordi Capellades, Alice E Lord, Oscar Yanes, Gabriella Ficz, Manuel Serrano","doi":"10.1158/0008-5472.CAN-24-0529","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-cancer therapies can induce cellular senescence, which is highly stable, or drug-tolerant persistence, which is efficiently reversed upon therapy termination. While approaches to target senescent cells have been extensively studied, further understanding of the processes regulating persistence is needed to develop treatment strategies to suppress persister cell survival. Here, we used mTOR/PI3K inhibition to develop and characterize a model of persistence-associated arrest in human cancer cells of various origins. Persister and senescent cancer cells shared an expanded lysosomal compartment and hypersensitivity to BCL-XL inhibition. However, persister cells lacked other features of senescence, such as loss of lamin B1, senescence-associated β-galactosidase activity, upregulation of MHC-I, and an inflammatory and secretory phenotype (SASP). Genome-wide CRISPR/Cas9 screening for genes required for the survival of persister cells revealed that they are hypersensitive to the inhibition of one-carbon (1C) metabolism, which was validated by the pharmacological inhibition of SHMT, a key enzyme that feeds methyl groups from serine into 1C metabolism. Connecting 1C metabolism with the epigenetic regulation of transcription, the repressive heterochromatic mark H4K20me3 was enriched at the promoters of SASP and interferon response genes in persister cells, while it was absent in proliferative or senescent cells. Moreover, persister cells overexpressed the H4K20 methyltransferases KMT5B/C, and their downregulation unleashed inflammatory programs and compromised the survival of persister cells. In summary, this study defined distinctive features of persister cancer cells, identified actionable vulnerabilities, and provided mechanistic insight into their low inflammatory activity.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-0529","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anti-cancer therapies can induce cellular senescence, which is highly stable, or drug-tolerant persistence, which is efficiently reversed upon therapy termination. While approaches to target senescent cells have been extensively studied, further understanding of the processes regulating persistence is needed to develop treatment strategies to suppress persister cell survival. Here, we used mTOR/PI3K inhibition to develop and characterize a model of persistence-associated arrest in human cancer cells of various origins. Persister and senescent cancer cells shared an expanded lysosomal compartment and hypersensitivity to BCL-XL inhibition. However, persister cells lacked other features of senescence, such as loss of lamin B1, senescence-associated β-galactosidase activity, upregulation of MHC-I, and an inflammatory and secretory phenotype (SASP). Genome-wide CRISPR/Cas9 screening for genes required for the survival of persister cells revealed that they are hypersensitive to the inhibition of one-carbon (1C) metabolism, which was validated by the pharmacological inhibition of SHMT, a key enzyme that feeds methyl groups from serine into 1C metabolism. Connecting 1C metabolism with the epigenetic regulation of transcription, the repressive heterochromatic mark H4K20me3 was enriched at the promoters of SASP and interferon response genes in persister cells, while it was absent in proliferative or senescent cells. Moreover, persister cells overexpressed the H4K20 methyltransferases KMT5B/C, and their downregulation unleashed inflammatory programs and compromised the survival of persister cells. In summary, this study defined distinctive features of persister cancer cells, identified actionable vulnerabilities, and provided mechanistic insight into their low inflammatory activity.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.