{"title":"GLP-1 receptor agonist liraglutide alleviates kidney injury by regulating nuclear translocation of NRF2 in diabetic nephropathy","authors":"Tingting Lin, Yuze Zhang, Qifeng Wei, Zugui Huang","doi":"10.1111/1440-1681.70003","DOIUrl":null,"url":null,"abstract":"<p>Diabetic nephropathy (DN) is a severe renal disorder that arises as a complication of diabetes. Liraglutide, an analogue of a glucagon-like peptide 1 (GLP-1) receptor agonist, has been shown to decrease diabetes-caused renal damage. Nevertheless, the complete understanding of the roles and mechanism remains unclear. In our study, diabetic rat models were created through a single intraperitoneal injection of streptozotocin (STZ). The level of fasting blood glucose, 24-h urine protein, serum creatinine (Scr) and blood urea nitrogen (BUN) were assessed. Periodic acid-Schiff (PAS) staining was applied to examine the pathological changes in renal tissues. Reactive oxygen species (ROS) formation was measured via dichloro-dihydro-fluorescein diacetate (DCFH-DA) probes. Western blot was conducted to examine the levels of oxidative stress-related and extracellular matrix (ECM)-associated proteins. The nuclear translocation of NRF2 was investigated through immunofluorescence and Western blot assays. We demonstrated that liraglutide attenuated DN-induced oxidative stress and ECM deposition in vitro and in vivo. Liraglutide exerted a reno-protective effect by promoting nuclear translocation of NRF2 in mesangial cells. ML385, an NRF2 inhibitor, counteracted the beneficial impact of liraglutide.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic nephropathy (DN) is a severe renal disorder that arises as a complication of diabetes. Liraglutide, an analogue of a glucagon-like peptide 1 (GLP-1) receptor agonist, has been shown to decrease diabetes-caused renal damage. Nevertheless, the complete understanding of the roles and mechanism remains unclear. In our study, diabetic rat models were created through a single intraperitoneal injection of streptozotocin (STZ). The level of fasting blood glucose, 24-h urine protein, serum creatinine (Scr) and blood urea nitrogen (BUN) were assessed. Periodic acid-Schiff (PAS) staining was applied to examine the pathological changes in renal tissues. Reactive oxygen species (ROS) formation was measured via dichloro-dihydro-fluorescein diacetate (DCFH-DA) probes. Western blot was conducted to examine the levels of oxidative stress-related and extracellular matrix (ECM)-associated proteins. The nuclear translocation of NRF2 was investigated through immunofluorescence and Western blot assays. We demonstrated that liraglutide attenuated DN-induced oxidative stress and ECM deposition in vitro and in vivo. Liraglutide exerted a reno-protective effect by promoting nuclear translocation of NRF2 in mesangial cells. ML385, an NRF2 inhibitor, counteracted the beneficial impact of liraglutide.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.