Video Assessment to Detect Amyotrophic Lateral Sclerosis.

Q1 Computer Science Digital Biomarkers Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI:10.1159/000540547
Guilherme Camargo Oliveira, Quoc Cuong Ngo, Leandro Aparecido Passos, Leonardo Silva Oliveira, Stella Stylianou, João Paulo Papa, Dinesh Kumar
{"title":"Video Assessment to Detect Amyotrophic Lateral Sclerosis.","authors":"Guilherme Camargo Oliveira, Quoc Cuong Ngo, Leandro Aparecido Passos, Leonardo Silva Oliveira, Stella Stylianou, João Paulo Papa, Dinesh Kumar","doi":"10.1159/000540547","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Weakened facial movements are early-stage symptoms of amyotrophic lateral sclerosis (ALS). ALS is generally detected based on changes in facial expressions, but large differences between individuals can lead to subjectivity in the diagnosis. We have proposed a computerized analysis of facial expression videos to detect ALS.</p><p><strong>Methods: </strong>This study investigated the action units obtained from facial expression videos to differentiate between ALS patients and healthy individuals, identifying the specific action units and facial expressions that give the best results. We utilized the Toronto NeuroFace Dataset, which includes nine facial expression tasks for healthy individuals and ALS patients.</p><p><strong>Results: </strong>The best classification accuracy was 0.91 obtained for the pretending to smile with tight lips expression.</p><p><strong>Conclusion: </strong>This pilot study shows the potential of using computerized facial expression analysis based on action units to identify facial weakness symptoms in ALS.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"8 1","pages":"171-180"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000540547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Weakened facial movements are early-stage symptoms of amyotrophic lateral sclerosis (ALS). ALS is generally detected based on changes in facial expressions, but large differences between individuals can lead to subjectivity in the diagnosis. We have proposed a computerized analysis of facial expression videos to detect ALS.

Methods: This study investigated the action units obtained from facial expression videos to differentiate between ALS patients and healthy individuals, identifying the specific action units and facial expressions that give the best results. We utilized the Toronto NeuroFace Dataset, which includes nine facial expression tasks for healthy individuals and ALS patients.

Results: The best classification accuracy was 0.91 obtained for the pretending to smile with tight lips expression.

Conclusion: This pilot study shows the potential of using computerized facial expression analysis based on action units to identify facial weakness symptoms in ALS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过视频评估检测肌萎缩性脊髓侧索硬化症
简介面部动作减弱是肌萎缩性脊髓侧索硬化症(ALS)的早期症状。一般根据面部表情的变化来检测 ALS,但个体之间的巨大差异会导致诊断的主观性。我们提出了一种通过计算机分析面部表情视频来检测 ALS 的方法:本研究调查了从面部表情视频中获得的动作单元,以区分 ALS 患者和健康人,并确定了效果最佳的特定动作单元和面部表情。我们使用了多伦多神经脸部数据集,其中包括针对健康人和 ALS 患者的九项面部表情任务:结果:"紧闭嘴唇假装微笑 "表情的最佳分类准确率为 0.91:这项试验研究表明,基于动作单元的计算机化面部表情分析具有识别 ALS 患者面部无力症状的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Biomarkers
Digital Biomarkers Medicine-Medicine (miscellaneous)
CiteScore
10.60
自引率
0.00%
发文量
12
审稿时长
23 weeks
期刊最新文献
The Imperative of Voice Data Collection in Clinical Trials. eHealth and mHealth in Antimicrobial Stewardship Programs. Detecting Longitudinal Trends between Passively Collected Phone Use and Anxiety among College Students. Video Assessment to Detect Amyotrophic Lateral Sclerosis. Digital Vocal Biomarker of Smoking Status Using Ecological Audio Recordings: Results from the Colive Voice Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1