Peroxisome inter-organelle cooperation in Drosophila.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-29 DOI:10.1139/gen-2024-0082
Andy Cheng, Andrew J Simmonds
{"title":"Peroxisome inter-organelle cooperation in Drosophila.","authors":"Andy Cheng, Andrew J Simmonds","doi":"10.1139/gen-2024-0082","DOIUrl":null,"url":null,"abstract":"<p><p>Within many cellular organelles biochemical functions are compartmentalized, which facilitates optimized enzymatic environments. However, processing and or storage of metabolites in the same pathway can occur in multiple organelles. Thus, spatially separated organelles would need to cooperate functionally. Coordination would also be needed between organelles in different specialized cells, with shared metabolites passed via circulation. Peroxisomes are membrane-bounded organelles responsible for cellular redox and lipid metabolism in eukaryotic cells. Studies using single cells suggest peroxisomes coordinate with other organelles including mitochondria, ER (endoplasmic reticulum), lysosomes, and lipid droplets. Some of these coordinated functions require, or are at least enhanced by, direct contact between peroxisomes and other organelles. Peroxisome dysfunction in humans leads to multiorgan effects including neurological, metabolic, developmental, and age-related diseases. Thus, increased understanding of peroxisome coordination with other organelles, especially those specialized cells in various organs is essential. Drosophila melanogaster (fruit fly) has emerged recently as an effective animal model for understanding peroxisomes. Here we review current knowledge of genetic pathways regulating coordination between peroxisomes with other organelles in flies, speculating about analogous roles for conserved Drosophila genes encoding proteins with known organelle coordinating roles in other species.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2024-0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Within many cellular organelles biochemical functions are compartmentalized, which facilitates optimized enzymatic environments. However, processing and or storage of metabolites in the same pathway can occur in multiple organelles. Thus, spatially separated organelles would need to cooperate functionally. Coordination would also be needed between organelles in different specialized cells, with shared metabolites passed via circulation. Peroxisomes are membrane-bounded organelles responsible for cellular redox and lipid metabolism in eukaryotic cells. Studies using single cells suggest peroxisomes coordinate with other organelles including mitochondria, ER (endoplasmic reticulum), lysosomes, and lipid droplets. Some of these coordinated functions require, or are at least enhanced by, direct contact between peroxisomes and other organelles. Peroxisome dysfunction in humans leads to multiorgan effects including neurological, metabolic, developmental, and age-related diseases. Thus, increased understanding of peroxisome coordination with other organelles, especially those specialized cells in various organs is essential. Drosophila melanogaster (fruit fly) has emerged recently as an effective animal model for understanding peroxisomes. Here we review current knowledge of genetic pathways regulating coordination between peroxisomes with other organelles in flies, speculating about analogous roles for conserved Drosophila genes encoding proteins with known organelle coordinating roles in other species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果蝇的过氧物酶体细胞器间合作
在许多细胞器内,生化功能被分隔开来,这有利于优化酶环境。然而,同一途径中代谢物的加工和储存可在多个细胞器中进行。因此,空间上分离的细胞器需要在功能上进行合作。不同特化细胞中的细胞器之间也需要协调,通过循环传递共享的代谢物。过氧物酶体是真核细胞中负责细胞氧化还原和脂质代谢的膜束细胞器。利用单细胞进行的研究表明,过氧物酶体与线粒体、ER(内质网)、溶酶体和脂滴等其他细胞器相互协调。其中一些协调功能需要过氧物酶体与其他细胞器直接接触,或至少通过这种接触得到加强。人体过氧化物酶体功能障碍会导致多器官的影响,包括神经、代谢、发育和与年龄有关的疾病。因此,进一步了解过氧物酶体与其他细胞器(尤其是各器官中的特化细胞)之间的协调至关重要。黑腹果蝇(果蝇)近来已成为了解过氧物酶体的有效动物模型。在这里,我们回顾了目前关于调控果蝇过氧物酶体与其他细胞器协调的遗传途径的知识,并推测了果蝇保守基因在其他物种中编码已知具有细胞器协调作用的蛋白质的类似作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1