Qi Teng, Wei Li, Guangwei Hu, Yuanyuan Shu, Yun Liu
{"title":"Innovative Dual-Decoupling CNN with Layer-wise Temporal-Spatial Attention for Sensor-Based Human Activity Recognition.","authors":"Qi Teng, Wei Li, Guangwei Hu, Yuanyuan Shu, Yun Liu","doi":"10.1109/JBHI.2024.3488528","DOIUrl":null,"url":null,"abstract":"<p><p>Human Activity Recognition (HAR) is essential for monitoring and analyzing human behavior, particularly in health applications such as fall detection and chronic disease management. Traditional methods, even those incorporating attention mechanisms, often oversimplify the complex temporal and spatial dependencies in sensor data by processing features uniformly, leading to inadequate modeling of high-dimensional interactions. To address these limitations, we propose a novel framework: the Temporal-Spatial Feature Decoupling Unit with Layer-wise Training Convolutional Neural Network (CNN-TSFDU-LW). Our model enhances HAR accuracy by decoupling temporal and spatial dependencies, facilitating more precise feature extraction and reducing computational overhead. The TSFDU mechanism enables parallel processing of temporal and spatial features, thereby enriching the learned representations. Furthermore, layer-wise training with a local error function allows for independent updates of each CNN layer, reducing the number of parameters and improving memory efficiency without compromising performance. Experiments on four benchmark datasets (UCI-HAR, PAMAP2, UNIMIB-SHAR, and USC-HAD) demonstrate accuracy improvements ranging from 0.9% to 4.19% over state-of-the-art methods while simultaneously reducing computational complexity. Specifically, our framework achieves accuracy rates of 97.90% on UCI-HAR, 94.34% on PAMAP2, 78.90% on UNIMIB-SHAR, and 94.71% on USC-HAD, underscoring its effectiveness in complex HAR tasks. In conclusion, the CNN-TSFDU-LW framework represents a significant advancement in sensor-based HAR, delivering both improved accuracy and computational efficiency, with promising potential for enhancing health monitoring applications.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3488528","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Human Activity Recognition (HAR) is essential for monitoring and analyzing human behavior, particularly in health applications such as fall detection and chronic disease management. Traditional methods, even those incorporating attention mechanisms, often oversimplify the complex temporal and spatial dependencies in sensor data by processing features uniformly, leading to inadequate modeling of high-dimensional interactions. To address these limitations, we propose a novel framework: the Temporal-Spatial Feature Decoupling Unit with Layer-wise Training Convolutional Neural Network (CNN-TSFDU-LW). Our model enhances HAR accuracy by decoupling temporal and spatial dependencies, facilitating more precise feature extraction and reducing computational overhead. The TSFDU mechanism enables parallel processing of temporal and spatial features, thereby enriching the learned representations. Furthermore, layer-wise training with a local error function allows for independent updates of each CNN layer, reducing the number of parameters and improving memory efficiency without compromising performance. Experiments on four benchmark datasets (UCI-HAR, PAMAP2, UNIMIB-SHAR, and USC-HAD) demonstrate accuracy improvements ranging from 0.9% to 4.19% over state-of-the-art methods while simultaneously reducing computational complexity. Specifically, our framework achieves accuracy rates of 97.90% on UCI-HAR, 94.34% on PAMAP2, 78.90% on UNIMIB-SHAR, and 94.71% on USC-HAD, underscoring its effectiveness in complex HAR tasks. In conclusion, the CNN-TSFDU-LW framework represents a significant advancement in sensor-based HAR, delivering both improved accuracy and computational efficiency, with promising potential for enhancing health monitoring applications.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.