BALB/c mice challenged with SARS-CoV-2 B.1.351 β variant cause pathophysiological and neurological changes within the lungs and brains.

IF 3.6 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of General Virology Pub Date : 2024-10-01 DOI:10.1099/jgv.0.002039
Panatda Saenkham-Huntsinger, Aleksandra K Drelich, Pinghan Huang, Bi-Hung Peng, Chien-Te K Tseng
{"title":"BALB/c mice challenged with SARS-CoV-2 B.1.351 β variant cause pathophysiological and neurological changes within the lungs and brains.","authors":"Panatda Saenkham-Huntsinger, Aleksandra K Drelich, Pinghan Huang, Bi-Hung Peng, Chien-Te K Tseng","doi":"10.1099/jgv.0.002039","DOIUrl":null,"url":null,"abstract":"<p><p>Up to one-third of individuals suffering from acute SARS-CoV-2 infection with the onset of severe-to-mild diseases could develop several symptoms of neurological disorders, which could last long after resolving the infection, known as neuro-COVID. Effective therapeutic treatments for neuro-COVID remain unavailable, in part, due to the absence of animal models for studying its underlying mechanisms and developing medical countermeasures against it. Here, we explored the impact of SARS-CoV-2 infection on the well-being of respiratory and neurological functions of BALB/c mice by using a clinical isolate of β-variant, i.e. B.1.351. We found that this β-variant of SARS-CoV-2 primarily infected the lungs, causing tissue damage, profound inflammatory responses, altered respiratory functions and transient but significant hypoxia. Although live progeny viruses could not be isolated, viral RNAs were detected across many anatomical regions of the brains in most challenged mice and triggered activation of genes encoding for NF<i>-kB</i>, <i>IL-6</i>, <i>IP-10</i> and <i>RANTES</i> and microglial cells. We noted that the significantly activated <i>IL-6</i>-encoded gene persisted at 4 weeks after infection. Together, these results suggest that this B.1.351/BALB/c model of SARS-CoV-2 infection warrants further studies to establish it as a desirable model for studies of neuropathogenesis and the development of effective therapeutics of neuro-COVID.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.002039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Up to one-third of individuals suffering from acute SARS-CoV-2 infection with the onset of severe-to-mild diseases could develop several symptoms of neurological disorders, which could last long after resolving the infection, known as neuro-COVID. Effective therapeutic treatments for neuro-COVID remain unavailable, in part, due to the absence of animal models for studying its underlying mechanisms and developing medical countermeasures against it. Here, we explored the impact of SARS-CoV-2 infection on the well-being of respiratory and neurological functions of BALB/c mice by using a clinical isolate of β-variant, i.e. B.1.351. We found that this β-variant of SARS-CoV-2 primarily infected the lungs, causing tissue damage, profound inflammatory responses, altered respiratory functions and transient but significant hypoxia. Although live progeny viruses could not be isolated, viral RNAs were detected across many anatomical regions of the brains in most challenged mice and triggered activation of genes encoding for NF-kB, IL-6, IP-10 and RANTES and microglial cells. We noted that the significantly activated IL-6-encoded gene persisted at 4 weeks after infection. Together, these results suggest that this B.1.351/BALB/c model of SARS-CoV-2 infection warrants further studies to establish it as a desirable model for studies of neuropathogenesis and the development of effective therapeutics of neuro-COVID.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BALB/c 小鼠受到 SARS-CoV-2 B.1.351 β 变体的挑战后,肺部和大脑的病理生理和神经系统会发生变化。
在急性 SARS-CoV-2 感染者中,有多达三分之一的人在开始出现重度至轻度疾病时会出现多种神经紊乱症状,这些症状在感染缓解后可能会持续很长时间,这就是所谓的神经性 COVID。目前还没有针对神经性 COVID 的有效治疗方法,部分原因是缺乏动物模型来研究其基本机制和开发医疗对策。在此,我们使用临床分离的 β 变异株,即 B.1.351,探讨了 SARS-CoV-2 感染对 BALB/c 小鼠呼吸和神经功能的影响。我们发现,SARS-CoV-2 的这种 β 变异株主要感染肺部,造成组织损伤、严重的炎症反应、呼吸功能改变和短暂但显著的缺氧。虽然无法分离出活的后代病毒,但在大多数受感染小鼠大脑的许多解剖区域都检测到了病毒 RNA,并引发了 NF-kB、IL-6、IP-10 和 RANTES 编码基因以及小胶质细胞的激活。我们注意到,IL-6编码基因的明显激活在感染后4周仍持续存在。这些结果表明,B.1.351/BALB/c 这种 SARS-CoV-2 感染模型值得进一步研究,以将其确立为研究神经发病机制和开发有效的神经-COVID 治疗方法的理想模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of General Virology
Journal of General Virology 医学-病毒学
CiteScore
7.70
自引率
2.60%
发文量
91
审稿时长
3 months
期刊介绍: JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.
期刊最新文献
Emergence of highly pathogenic avian influenza viruses H5N1 and H5N5 in white-tailed eagles, 2021-2023. Preliminary evidence that Bunyamwera virus causes severe disease characterized by systemic vascular and multiorgan necrosis in an immunocompromised mouse model. ICTV Virus Taxonomy Profile: Peribunyaviridae 2024. Toscana virus - an emerging Mediterranean arbovirus transmitted by sand flies. Dicer-2 mutations in Aedes aegypti cells lead to a diminished antiviral function against Rift Valley fever virus and Bunyamwera virus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1