Examining the feasibility of replacing ORF3a with fluorescent genes to construct SARS-CoV-2 reporter viruses.

IF 3.6 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of General Virology Pub Date : 2025-02-01 DOI:10.1099/jgv.0.002072
Isobel Webb, Maximillian Erdmann, Rachel Milligan, Megan Savage, David A Matthews, Andrew D Davidson
{"title":"Examining the feasibility of replacing ORF3a with fluorescent genes to construct SARS-CoV-2 reporter viruses.","authors":"Isobel Webb, Maximillian Erdmann, Rachel Milligan, Megan Savage, David A Matthews, Andrew D Davidson","doi":"10.1099/jgv.0.002072","DOIUrl":null,"url":null,"abstract":"<p><p>The SARS-CoV-2 genome encodes at least nine accessory proteins, including innate immune antagonist and putative viroporin ORF3a. ORF3a plays a role in many stages of the viral replication cycle, including immune modulation. We constructed two recombinant (r)SARS-CoV-2 viruses in which the ORF3a gene was replaced with mScarlet (mS) or mNeonGreen (mNG), denoted as rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-mNG, respectively. rSARS-CoV-2-Δ3a-mNG generated a fluorescent signal after infection in both A549-ACE-2-TMPRSS2 (AAT) and Vero-E6-TMPRSS2 (VTN) cells, unlike rSARS-CoV-2-Δ3a-mS. rSARS-CoV-2-Δ3a-mS mS protein could be detected immunologically in VTN but not AAT cells, indicating the expression of a non-fluorescent mS protein. The analysis of the viral transcriptomes in infected AAT cells by nanopore direct RNA sequencing (dRNAseq) revealed that the level of mS transcript was below the limit of detection in AAT cells. rSARS-CoV-2-Δ3a-mNG virus was found to be genetically stable in AAT and VTN cells, but rSARS-CoV-2-Δ3a-mS acquired partial deletions of the mS gene during sequential passaging in VTN cells, creating the virus rSARS-CoV-2-Δ3a-ΔmS. The mS deletion in VTN cells removes the chromophore coding sequence, and this may explain the presence of a non-fluorescent mS protein detected in VTN cells. The rSARS-CoV-2-Δ3a-mNG, rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-ΔmS viruses all replicated to a lower titre and produced smaller plaques than the parental rSARS-CoV-2-S-D614G. Interestingly, the rSARS-CoV-2-Δ3a-ΔmS virus produced higher virus titres and larger plaque sizes than rSARS-CoV-2-Δ3a-mS. This suggested that both the insertion of mS coding sequence and the deletion of ORF3a coding sequence contributed to attenuation. In comparison with rSARS-CoV-2, the rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-mNG viruses showed increased sensitivity to pre-treatment of cells with IFN-α but did not exhibit a dose-dependent increase in replication in the presence of the Janus kinase-signal transducer and activator of transcription signalling pathway inhibitor, ruxolitinib. In conclusion, the replacement of the ORF3a coding sequence with those of fluorescent reporter proteins attenuated the replication of SARS-CoV-2 and its ability to effectively evade the innate immune response <i>in vitro</i>.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"106 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.002072","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The SARS-CoV-2 genome encodes at least nine accessory proteins, including innate immune antagonist and putative viroporin ORF3a. ORF3a plays a role in many stages of the viral replication cycle, including immune modulation. We constructed two recombinant (r)SARS-CoV-2 viruses in which the ORF3a gene was replaced with mScarlet (mS) or mNeonGreen (mNG), denoted as rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-mNG, respectively. rSARS-CoV-2-Δ3a-mNG generated a fluorescent signal after infection in both A549-ACE-2-TMPRSS2 (AAT) and Vero-E6-TMPRSS2 (VTN) cells, unlike rSARS-CoV-2-Δ3a-mS. rSARS-CoV-2-Δ3a-mS mS protein could be detected immunologically in VTN but not AAT cells, indicating the expression of a non-fluorescent mS protein. The analysis of the viral transcriptomes in infected AAT cells by nanopore direct RNA sequencing (dRNAseq) revealed that the level of mS transcript was below the limit of detection in AAT cells. rSARS-CoV-2-Δ3a-mNG virus was found to be genetically stable in AAT and VTN cells, but rSARS-CoV-2-Δ3a-mS acquired partial deletions of the mS gene during sequential passaging in VTN cells, creating the virus rSARS-CoV-2-Δ3a-ΔmS. The mS deletion in VTN cells removes the chromophore coding sequence, and this may explain the presence of a non-fluorescent mS protein detected in VTN cells. The rSARS-CoV-2-Δ3a-mNG, rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-ΔmS viruses all replicated to a lower titre and produced smaller plaques than the parental rSARS-CoV-2-S-D614G. Interestingly, the rSARS-CoV-2-Δ3a-ΔmS virus produced higher virus titres and larger plaque sizes than rSARS-CoV-2-Δ3a-mS. This suggested that both the insertion of mS coding sequence and the deletion of ORF3a coding sequence contributed to attenuation. In comparison with rSARS-CoV-2, the rSARS-CoV-2-Δ3a-mS and rSARS-CoV-2-Δ3a-mNG viruses showed increased sensitivity to pre-treatment of cells with IFN-α but did not exhibit a dose-dependent increase in replication in the presence of the Janus kinase-signal transducer and activator of transcription signalling pathway inhibitor, ruxolitinib. In conclusion, the replacement of the ORF3a coding sequence with those of fluorescent reporter proteins attenuated the replication of SARS-CoV-2 and its ability to effectively evade the innate immune response in vitro.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of General Virology
Journal of General Virology 医学-病毒学
CiteScore
7.70
自引率
2.60%
发文量
91
审稿时长
3 months
期刊介绍: JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.
期刊最新文献
Erratum: Out-of-sync evolutionary patterns and mutual interplay of major and minor capsid proteins in norovirus GII.2. Targeting pseudoknots with Cas13b inhibits porcine epidemic diarrhoea virus replication. Prohibitin of swine antagonizes SADS-CoV replication and virus-induced apoptosis. The EMCV protein 2B* is required for efficient cell lysis via both caspase-3-dependent and -independent pathways during infection. Examining the feasibility of replacing ORF3a with fluorescent genes to construct SARS-CoV-2 reporter viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1