Cong Ma, Metin Balaban, Jingxian Liu, Siqi Chen, Michael J Wilson, Christopher H Sun, Li Ding, Benjamin J Raphael
{"title":"Inferring allele-specific copy number aberrations and tumor phylogeography from spatially resolved transcriptomics.","authors":"Cong Ma, Metin Balaban, Jingxian Liu, Siqi Chen, Michael J Wilson, Christopher H Sun, Li Ding, Benjamin J Raphael","doi":"10.1038/s41592-024-02438-9","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing somatic evolution within a tumor over time and across space is a key challenge in cancer research. Spatially resolved transcriptomics (SRT) measures gene expression at thousands of spatial locations in a tumor, but does not directly reveal genomic aberrations. We introduce CalicoST, an algorithm to simultaneously infer allele-specific copy number aberrations (CNAs) and reconstruct spatial tumor evolution, or phylogeography, from SRT data. CalicoST identifies important classes of CNAs-including copy-neutral loss of heterozygosity and mirrored subclonal CNAs-that are invisible to total copy number analysis. Using nine patients' data from the Human Tumor Atlas Network, CalicoST achieves an average accuracy of 86%, approximately 21% higher than existing methods. CalicoST reconstructs a tumor phylogeography in three-dimensional space for two patients with multiple adjacent slices. CalicoST analysis of multiple SRT slices from a cancerous prostate organ reveals mirrored subclonal CNAs on the two sides of the prostate, forming a bifurcating phylogeography in both genetic and physical space.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02438-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Analyzing somatic evolution within a tumor over time and across space is a key challenge in cancer research. Spatially resolved transcriptomics (SRT) measures gene expression at thousands of spatial locations in a tumor, but does not directly reveal genomic aberrations. We introduce CalicoST, an algorithm to simultaneously infer allele-specific copy number aberrations (CNAs) and reconstruct spatial tumor evolution, or phylogeography, from SRT data. CalicoST identifies important classes of CNAs-including copy-neutral loss of heterozygosity and mirrored subclonal CNAs-that are invisible to total copy number analysis. Using nine patients' data from the Human Tumor Atlas Network, CalicoST achieves an average accuracy of 86%, approximately 21% higher than existing methods. CalicoST reconstructs a tumor phylogeography in three-dimensional space for two patients with multiple adjacent slices. CalicoST analysis of multiple SRT slices from a cancerous prostate organ reveals mirrored subclonal CNAs on the two sides of the prostate, forming a bifurcating phylogeography in both genetic and physical space.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.