{"title":"Exploring Potential Biomarkers and Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma Based on Bioinformatics.","authors":"Jiayue Qi, Qingqing Guo, Jia Bai, Xiaoqiang Liang, Wenwei Zhu, Chengxin Li, Fang Xie","doi":"10.2147/OTT.S468399","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cutaneous squamous cell carcinoma (cSCC) ranks as the second most common malignancy in clinical practice and poses a significant threat to public health due to its high malignancy. In this study, we aimed to explore potential biomarkers and molecular mechanisms of cSCC.</p><p><strong>Methods: </strong>Differentially expressed genes (DEGs) from GSE66359 and GSE117247 datasets were identified using R software. We conducted enrichment analyses and screened hub genes through protein-protein interaction (PPI) analysis and weighted gene co-expression network analysis (WGCNA). To assess the diagnostic performance of these genes, we generated ROC curves using both internal and external datasets (GSE45164) and validated the expression levels of these genes in cSCC tissues through immunohistochemistry. Subsequently, we predicted the target miRNAs and lncRNAs for hub genes using online databases and constructed competing endogenous RNA (ceRNA) networks.</p><p><strong>Results: </strong>In total, we identified 505 upregulated DEGs and 522 downregulated DEGs. Through PPI and WGCNA analyses, we identified four hub genes exhibiting robust diagnostic performance in internal and external datasets (AUC > 0.9) and selected three previously unreported genes for further analysis. Immunohistochemistry demonstrated significantly elevated CCNA2, CCNB2, and UBE2C expression in cSCC tissues compared to normal skin tissues. Finally, we constructed three ceRNA networks, namely NEAT1/H19-hsa-miR-148a-3p-CCNA2 and NEAT1-hsa-miR-140-3p-UBE2C.</p><p><strong>Conclusion: </strong>In conclusion, we have identified CCNA2, CCNB2, and UBE2C as novel biomarkers for cSCC, and the NEAT1/H19-hsa-miR-148a-3p-CCNA2 and NEAT1-hsa-miR-140-3p-UBE2C ceRNA networks may represent molecular mechanisms under-lying cSCC progression. The findings of this study offer new diagnostic and therapeutic options for cSCC patients.</p>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"17 ","pages":"841-856"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/OTT.S468399","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Cutaneous squamous cell carcinoma (cSCC) ranks as the second most common malignancy in clinical practice and poses a significant threat to public health due to its high malignancy. In this study, we aimed to explore potential biomarkers and molecular mechanisms of cSCC.
Methods: Differentially expressed genes (DEGs) from GSE66359 and GSE117247 datasets were identified using R software. We conducted enrichment analyses and screened hub genes through protein-protein interaction (PPI) analysis and weighted gene co-expression network analysis (WGCNA). To assess the diagnostic performance of these genes, we generated ROC curves using both internal and external datasets (GSE45164) and validated the expression levels of these genes in cSCC tissues through immunohistochemistry. Subsequently, we predicted the target miRNAs and lncRNAs for hub genes using online databases and constructed competing endogenous RNA (ceRNA) networks.
Results: In total, we identified 505 upregulated DEGs and 522 downregulated DEGs. Through PPI and WGCNA analyses, we identified four hub genes exhibiting robust diagnostic performance in internal and external datasets (AUC > 0.9) and selected three previously unreported genes for further analysis. Immunohistochemistry demonstrated significantly elevated CCNA2, CCNB2, and UBE2C expression in cSCC tissues compared to normal skin tissues. Finally, we constructed three ceRNA networks, namely NEAT1/H19-hsa-miR-148a-3p-CCNA2 and NEAT1-hsa-miR-140-3p-UBE2C.
Conclusion: In conclusion, we have identified CCNA2, CCNB2, and UBE2C as novel biomarkers for cSCC, and the NEAT1/H19-hsa-miR-148a-3p-CCNA2 and NEAT1-hsa-miR-140-3p-UBE2C ceRNA networks may represent molecular mechanisms under-lying cSCC progression. The findings of this study offer new diagnostic and therapeutic options for cSCC patients.
期刊介绍:
OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer.
The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype.
Specific topics covered by the journal include:
-Novel therapeutic targets and innovative agents
-Novel therapeutic regimens for improved benefit and/or decreased side effects
-Early stage clinical trials
Further considerations when submitting to OncoTargets and Therapy:
-Studies containing in vivo animal model data will be considered favorably.
-Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines.
-Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples.
-Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Single nucleotide polymorphism (SNP) studies will not be considered.