{"title":"Integrated formic acid and deep eutectic solvent mediated sustainable synthesis of cellulose nanocrystals from <i>Sterculia foetida</i> shells.","authors":"Kurappalli Rohil Kumar, Nirajha Vishnu, Gnanabarathi C S, Kiran Babu Uppuluri, Rangabhashiyam Selvasembian","doi":"10.1080/10826068.2024.2419873","DOIUrl":null,"url":null,"abstract":"<p><p>The present study reports the green synthesis of cellulose nanocrystals from the shells of <i>Sterculia foetida</i> (SFS) cellulose. Three different methods, alkali, acid and organic acid, were screened for the maximum cellulose extraction. A maximum cellulose yield, 30.6 ± 0.84 <i>w/w</i>, was obtained using 90% formic acid at 110 °C in 120 min. The extracted cellulose was characterized and identified by instrumental analyses. SEM analysis showed skeletal rod-like microfibril structures and similar intra-fibrillar widths. CP/MAS <sup>13</sup>C NMR and FTIR spectrum revealed the purity of cellulose and the absence of other components like hemicellulose and lignin. XRD study revealed a cellulose crystallinity index of 88.07%. BET analysis showed a good surface area (3.3213 m<sup>2</sup>/g) and a micro-pore area of 1.871 m<sup>2</sup>/g. The cellulose nanocrystals were synthesized from the extracted cellulose using deep eutectic solvents (DES), choline chloride and lactic acid (1:2 ratio). The cellulose nanocrystals (CNC) synthesized from DES-based exhibited zeta potential and particle size of -16.7 mV and 576.3 d.nm. DES-synthesized cellulose nanocrystals were spherical-like shapes, as observed from TEM images. The present results exposed that formic acid is an effective and green catalyst for the extraction of cellulose and DES for the sustainable synthesis of CNC.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-14"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2419873","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study reports the green synthesis of cellulose nanocrystals from the shells of Sterculia foetida (SFS) cellulose. Three different methods, alkali, acid and organic acid, were screened for the maximum cellulose extraction. A maximum cellulose yield, 30.6 ± 0.84 w/w, was obtained using 90% formic acid at 110 °C in 120 min. The extracted cellulose was characterized and identified by instrumental analyses. SEM analysis showed skeletal rod-like microfibril structures and similar intra-fibrillar widths. CP/MAS 13C NMR and FTIR spectrum revealed the purity of cellulose and the absence of other components like hemicellulose and lignin. XRD study revealed a cellulose crystallinity index of 88.07%. BET analysis showed a good surface area (3.3213 m2/g) and a micro-pore area of 1.871 m2/g. The cellulose nanocrystals were synthesized from the extracted cellulose using deep eutectic solvents (DES), choline chloride and lactic acid (1:2 ratio). The cellulose nanocrystals (CNC) synthesized from DES-based exhibited zeta potential and particle size of -16.7 mV and 576.3 d.nm. DES-synthesized cellulose nanocrystals were spherical-like shapes, as observed from TEM images. The present results exposed that formic acid is an effective and green catalyst for the extraction of cellulose and DES for the sustainable synthesis of CNC.
期刊介绍:
Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.