Chromosome-level genome assembly of Megachile lagopoda (Linnaeus, 1761) (Hymenoptera: Megachilidae).

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-10-29 DOI:10.1038/s41597-024-04028-y
Dan Zhang, Jianfeng Jin, Zeqing Niu, Michael C Orr, Feng Zhang, Rafael R Ferrari, Qingtao Wu, Qingsong Zhou, Wa Da, Arong Luo, Chaodong Zhu
{"title":"Chromosome-level genome assembly of Megachile lagopoda (Linnaeus, 1761) (Hymenoptera: Megachilidae).","authors":"Dan Zhang, Jianfeng Jin, Zeqing Niu, Michael C Orr, Feng Zhang, Rafael R Ferrari, Qingtao Wu, Qingsong Zhou, Wa Da, Arong Luo, Chaodong Zhu","doi":"10.1038/s41597-024-04028-y","DOIUrl":null,"url":null,"abstract":"<p><p>Megachile is one of the largest bee genera, including nearly 1,500 species, but very few chromosome-level assemblies exist for this group or the family Megachilidae. Here, we report the chromosome-level genome assembly of Megachile lagopoda collected from Xizang, China. Using PacBio CLR long reads and Hi-C data, we assembled a genome of 256.83 Mb with 96.08% of the assembly located on 16 chromosomes. Our assembly contains 266 scaffolds, with a scaffold N50 length of 15.6 Mb, and BUSCO completeness of 99.20%. We masked 27.10% (69.61 Mb) of the assembly as repetitive elements, identified 459 non-coding RNAs, and predicted 11,157 protein-coding genes. This high-quality genome of M. lagopoda represents an important step forward for our knowledge of megachilid genomics and bee evolution overall.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1171"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04028-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Megachile is one of the largest bee genera, including nearly 1,500 species, but very few chromosome-level assemblies exist for this group or the family Megachilidae. Here, we report the chromosome-level genome assembly of Megachile lagopoda collected from Xizang, China. Using PacBio CLR long reads and Hi-C data, we assembled a genome of 256.83 Mb with 96.08% of the assembly located on 16 chromosomes. Our assembly contains 266 scaffolds, with a scaffold N50 length of 15.6 Mb, and BUSCO completeness of 99.20%. We masked 27.10% (69.61 Mb) of the assembly as repetitive elements, identified 459 non-coding RNAs, and predicted 11,157 protein-coding genes. This high-quality genome of M. lagopoda represents an important step forward for our knowledge of megachilid genomics and bee evolution overall.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Megachile lagopoda (Linnaeus, 1761) (Hymenoptera: Megachilidae) 染色体级基因组组装。
Megachile是最大的蜂属之一,包括近1,500个物种,但该蜂属或Megachilidae科的染色体组组装却很少。在这里,我们报告了从中国西藏采集的Megachile lagopoda的染色体组水平基因组组装。利用 PacBio CLR 长读数和 Hi-C 数据,我们组装了一个 256.83 Mb 的基因组,其中 96.08% 的基因组位于 16 条染色体上。我们的装配包含 266 个支架,支架 N50 长度为 15.6 Mb,BUSCO 完整性为 99.20%。我们屏蔽了 27.10% (69.61 Mb)的重复元件,鉴定了 459 个非编码 RNA,并预测了 11,157 个蛋白质编码基因。这个高质量的M. lagopoda基因组代表着我们在巨蜂基因组学和蜜蜂进化方面迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A continuous pursuit dataset for online deep learning-based EEG brain-computer interface. A dataset of venture capitalist types in China (1978-2021): A machine-human hybrid approach. A high-quality genome assembly of the Spectacled Fulvetta (Fulvetta ruficapilla) endemic to China. A Hyperspectral Reflectance Database of Plastic Debris with Different Fractional Abundance in River Systems. Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1