FARFUM-RoP, A dataset for computer-aided detection of Retinopathy of Prematurity.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-10-30 DOI:10.1038/s41597-024-03897-7
Morteza Akbari, Hamid-Reza Pourreza, Elias Khalili Pour, Afsar Dastjani Farahani, Fatemeh Bazvand, Nazanin Ebrahimiadib, Marjan Imani Fooladi, Fereshteh Ramazani K
{"title":"FARFUM-RoP, A dataset for computer-aided detection of Retinopathy of Prematurity.","authors":"Morteza Akbari, Hamid-Reza Pourreza, Elias Khalili Pour, Afsar Dastjani Farahani, Fatemeh Bazvand, Nazanin Ebrahimiadib, Marjan Imani Fooladi, Fereshteh Ramazani K","doi":"10.1038/s41597-024-03897-7","DOIUrl":null,"url":null,"abstract":"<p><p>Retinopathy of Prematurity (ROP) is a critical eye disorder affecting premature infants, characterized by abnormal blood vessel development in the retina. Plus Disease, indicating severe ROP progression, plays a pivotal role in diagnosis. Recent advancements in Artificial Intelligence (AI) have shown parity with or surpass human experts in ROP detection, especially Plus Disease. However, the success of AI systems depends on high-quality datasets, emphasizing the need for collaboration and data sharing among researchers. To address this challenge, the paper introduces a new public dataset, FARFUM-RoP (Farabi and Ferdowsi University of Mashhad's ROP dataset), comprising 1533 ROP fundus images from 68 patients, annotated independently by five experienced childhood ophthalmologists as \"Normal,\" \"Pre-Plus,\" or \"Plus.\" Ethical principles and consent were meticulously followed during data collection. The paper presents the dataset structure, patient details, and expert labels.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1176"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-03897-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Retinopathy of Prematurity (ROP) is a critical eye disorder affecting premature infants, characterized by abnormal blood vessel development in the retina. Plus Disease, indicating severe ROP progression, plays a pivotal role in diagnosis. Recent advancements in Artificial Intelligence (AI) have shown parity with or surpass human experts in ROP detection, especially Plus Disease. However, the success of AI systems depends on high-quality datasets, emphasizing the need for collaboration and data sharing among researchers. To address this challenge, the paper introduces a new public dataset, FARFUM-RoP (Farabi and Ferdowsi University of Mashhad's ROP dataset), comprising 1533 ROP fundus images from 68 patients, annotated independently by five experienced childhood ophthalmologists as "Normal," "Pre-Plus," or "Plus." Ethical principles and consent were meticulously followed during data collection. The paper presents the dataset structure, patient details, and expert labels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FARFUM-RoP,早产儿视网膜病变计算机辅助检测数据集。
早产儿视网膜病变(ROP)是早产儿的一种严重眼部疾病,其特点是视网膜血管发育异常。显示严重早产儿视网膜病变进展的 "加号病"(Plus Disease)在诊断中起着至关重要的作用。人工智能(AI)的最新进展表明,在 ROP 检测(尤其是加号病)方面,人工智能与人类专家不相上下,甚至更胜一筹。然而,人工智能系统的成功取决于高质量的数据集,这就强调了研究人员之间合作和数据共享的必要性。为了应对这一挑战,本文介绍了一个新的公共数据集 FARFUM-RoP(法拉比和马什哈德费尔道西大学的 ROP 数据集),该数据集由 68 名患者的 1533 张 ROP 眼底图像组成,由五位经验丰富的儿童眼科专家独立注释为 "正常"、"Pre-Plus "或 "Plus"。数据收集过程中严格遵守了伦理原则并征得了同意。本文介绍了数据集结构、患者详情和专家标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A 3D dental model dataset with pre/post-orthodontic treatment for automatic tooth alignment. A Database of Stress-Strain Properties Auto-generated from the Scientific Literature using ChemDataExtractor. A multi-region single nucleus transcriptomic atlas of Parkinson's disease. A reference quality, fully annotated diploid genome from a Saudi individual. An ultrasonography of thyroid nodules dataset with pathological diagnosis annotation for deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1