An ultrasonography of thyroid nodules dataset with pathological diagnosis annotation for deep learning.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-23 DOI:10.1038/s41597-024-04156-5
Xiaowen Hou, Menglei Hua, Wei Zhang, Jianxin Ji, Xuan Zhang, Huiru Jiang, Mengyun Li, Xiaoxiao Wu, Wenwen Zhao, Shuxin Sun, Lei Cao, Liuying Wang
{"title":"An ultrasonography of thyroid nodules dataset with pathological diagnosis annotation for deep learning.","authors":"Xiaowen Hou, Menglei Hua, Wei Zhang, Jianxin Ji, Xuan Zhang, Huiru Jiang, Mengyun Li, Xiaoxiao Wu, Wenwen Zhao, Shuxin Sun, Lei Cao, Liuying Wang","doi":"10.1038/s41597-024-04156-5","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasonography (US) of thyroid nodules is often time consuming and may be inconsistent between observers, with a low positivity rate for malignancy in biopsies. Even after determining the ultrasound Thyroid Imaging Reporting and Data System (TIRADS) stage, Fine needle aspiration biopsy (FNAB) is still required to obtain a definitive diagnosis. Although various deep learning methods were developed in medical field, they tend to be trained using TI-RADS reports as image labels. Here, we present a large US dataset with pathological diagnosis annotation for each case, designed for developing deep learning algorithms to directly infer histological status from thyroid ultrasound images. The dataset was collected from two retrospective cohorts, which consists of 8508 US images from 842 cases. Additionally, we explained three deep learning models used as validation examples using this dataset.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1272"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04156-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonography (US) of thyroid nodules is often time consuming and may be inconsistent between observers, with a low positivity rate for malignancy in biopsies. Even after determining the ultrasound Thyroid Imaging Reporting and Data System (TIRADS) stage, Fine needle aspiration biopsy (FNAB) is still required to obtain a definitive diagnosis. Although various deep learning methods were developed in medical field, they tend to be trained using TI-RADS reports as image labels. Here, we present a large US dataset with pathological diagnosis annotation for each case, designed for developing deep learning algorithms to directly infer histological status from thyroid ultrasound images. The dataset was collected from two retrospective cohorts, which consists of 8508 US images from 842 cases. Additionally, we explained three deep learning models used as validation examples using this dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于深度学习的带有病理诊断注释的甲状腺结节超声造影数据集。
甲状腺结节的超声波检查(US)通常耗时较长,而且不同观察者的检查结果可能不一致,活检中恶性肿瘤的阳性率也很低。即使确定了超声甲状腺成像报告和数据系统(TIRADS)的分期,仍需要进行细针穿刺活检(FNAB)才能获得明确诊断。虽然医学领域开发了各种深度学习方法,但这些方法往往使用 TI-RADS 报告作为图像标签进行训练。在这里,我们展示了一个大型美国数据集,每个病例都有病理诊断注释,旨在开发深度学习算法,从甲状腺超声图像中直接推断组织学状态。该数据集收集自两个回顾性队列,由来自 842 个病例的 8508 张 US 图像组成。此外,我们还解释了使用该数据集作为验证示例的三种深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A 3D dental model dataset with pre/post-orthodontic treatment for automatic tooth alignment. A Database of Stress-Strain Properties Auto-generated from the Scientific Literature using ChemDataExtractor. A multi-region single nucleus transcriptomic atlas of Parkinson's disease. A reference quality, fully annotated diploid genome from a Saudi individual. An ultrasonography of thyroid nodules dataset with pathological diagnosis annotation for deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1