Metasurface folded lens system for ultrathin cameras

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-10-30 DOI:10.1126/sciadv.adr2319
Youngjin Kim, Taewon Choi, Gun-Yeal Lee, Changhyun Kim, Junseo Bang, Junhyeok Jang, Yoonchan Jeong, Byoungho Lee
{"title":"Metasurface folded lens system for ultrathin cameras","authors":"Youngjin Kim,&nbsp;Taewon Choi,&nbsp;Gun-Yeal Lee,&nbsp;Changhyun Kim,&nbsp;Junseo Bang,&nbsp;Junhyeok Jang,&nbsp;Yoonchan Jeong,&nbsp;Byoungho Lee","doi":"10.1126/sciadv.adr2319","DOIUrl":null,"url":null,"abstract":"<div >Slim cameras are essential in state-of-the-art consumer electronics such as smartphones or augmented/virtual reality devices. However, reducing the camera thickness faces challenges primarily due to the thick lens systems. Current lens systems, composed of stacked refractive lenses, are fundamentally constrained from becoming thinner due to the presence of empty spaces between lenses and the excessive volume of each lens. Here, we present a lens system using metasurface folded optics to overcome these pervasive issues. In our design, metasurfaces are arranged horizontally on a glass wafer and direct light along multifolded paths inside the substrate. This approach achieves an ultra-slim lens system with a thickness of 0.7 millimeters and 2× thinner relative to the EFL, thereby overcoming the inherent limitations of conventional optical platforms. It delivers quasi-diffraction–limited imaging quality with a 10° field of view and an <i>f</i> number of 4 at an operational wavelength of 852 nanometers. Our findings provide a compelling platform for compact cameras using folded nano-optics.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr2319","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr2319","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Slim cameras are essential in state-of-the-art consumer electronics such as smartphones or augmented/virtual reality devices. However, reducing the camera thickness faces challenges primarily due to the thick lens systems. Current lens systems, composed of stacked refractive lenses, are fundamentally constrained from becoming thinner due to the presence of empty spaces between lenses and the excessive volume of each lens. Here, we present a lens system using metasurface folded optics to overcome these pervasive issues. In our design, metasurfaces are arranged horizontally on a glass wafer and direct light along multifolded paths inside the substrate. This approach achieves an ultra-slim lens system with a thickness of 0.7 millimeters and 2× thinner relative to the EFL, thereby overcoming the inherent limitations of conventional optical platforms. It delivers quasi-diffraction–limited imaging quality with a 10° field of view and an f number of 4 at an operational wavelength of 852 nanometers. Our findings provide a compelling platform for compact cameras using folded nano-optics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于超薄相机的元表面折叠透镜系统。
在智能手机或增强/虚拟现实设备等最先进的消费电子产品中,超薄摄像头是必不可少的。然而,减小摄像头厚度面临的挑战主要来自于厚重的镜头系统。目前的透镜系统由堆叠折射透镜组成,由于透镜之间存在空隙以及每个透镜的体积过大,从根本上限制了透镜系统的减薄。在此,我们提出一种使用元表面折叠光学技术的透镜系统,以克服这些普遍存在的问题。在我们的设计中,元表面水平排列在玻璃晶片上,沿着基板内部的多重折叠路径引导光线。这种方法实现了超薄透镜系统,厚度仅为 0.7 毫米,相对于 EFL 薄了 2 倍,从而克服了传统光学平台的固有限制。在工作波长为 852 纳米时,它能提供准衍射极限成像质量,视场角为 10°,f 值为 4。我们的研究成果为使用折叠式纳米光学器件的紧凑型相机提供了一个极具吸引力的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport Single-step synthesis of shaped polymeric particles using initiated chemical vapor deposition in liquid crystals Tailored ultrasound propagation in microscale metamaterials via inertia design Physical experiments of waves generated by submerged steam eruptions with applications to volcanic tsunamis Mitochondrial elongation impairs breast cancer metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1