Joydeep Basu, Nicholas Parsons, Tim Friede, Nigel Stallard
{"title":"Statistical methods for clinical trials interrupted by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic: A review.","authors":"Joydeep Basu, Nicholas Parsons, Tim Friede, Nigel Stallard","doi":"10.1177/09622802241288350","DOIUrl":null,"url":null,"abstract":"<p><p>Cancellation or delay of non-essential medical interventions, limitation of face-to-face assessments or outpatient attendance due to lockdown restrictions, illness or fear of hospital or healthcare centre visits, and halting of research to allow diversion of healthcare resources to focus on the pandemic led to the interruption of many clinical trials during the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic. Appropriate analysis approaches are now required for these interrupted trials. In trials with long follow-up and longitudinal outcomes, data may be available on early outcomes for many patients for whom final, primary outcome data were not observed. A natural question is then how these early data can best be used in the trial analysis. Although recommendations are available from regulators, funders, and methodologists, there is a lack of a review of recent work addressing this problem. This article reports a review of recent methods that can be used in the setting of the analysis of interrupted clinical trials with longitudinal outcomes with monotone missingness. A search for methodological papers published during the period 2020-2023 identified 43 relevant publications. We categorised these articles under the four broad themes of missing value imputation, modelling and covariate adjustment, simulation and estimands. Although motivated by the interruption due to SARS-CoV-2 and the resulting disease, the papers reviewed and methods discussed are also relevant to clinical trials interrupted for other reasons, with follow-up discontinued.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"2131-2143"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241288350","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Cancellation or delay of non-essential medical interventions, limitation of face-to-face assessments or outpatient attendance due to lockdown restrictions, illness or fear of hospital or healthcare centre visits, and halting of research to allow diversion of healthcare resources to focus on the pandemic led to the interruption of many clinical trials during the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic. Appropriate analysis approaches are now required for these interrupted trials. In trials with long follow-up and longitudinal outcomes, data may be available on early outcomes for many patients for whom final, primary outcome data were not observed. A natural question is then how these early data can best be used in the trial analysis. Although recommendations are available from regulators, funders, and methodologists, there is a lack of a review of recent work addressing this problem. This article reports a review of recent methods that can be used in the setting of the analysis of interrupted clinical trials with longitudinal outcomes with monotone missingness. A search for methodological papers published during the period 2020-2023 identified 43 relevant publications. We categorised these articles under the four broad themes of missing value imputation, modelling and covariate adjustment, simulation and estimands. Although motivated by the interruption due to SARS-CoV-2 and the resulting disease, the papers reviewed and methods discussed are also relevant to clinical trials interrupted for other reasons, with follow-up discontinued.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)