Marco Iuliano, Roberta Maria Mongiovì, Alberico Parente, Lorenzo Grimaldi, Blerta Kertusha, Anna Carraro, Raffaella Marocco, Giulia Mancarella, Cosmo Del Borgo, Maria Dorrucci, Miriam Lichtner, Giorgio Mangino, Giovanna Romeo
{"title":"Memory T Cells Subpopulations in a Cohort of COVID-19 Vaccinated or Recovered Subjects.","authors":"Marco Iuliano, Roberta Maria Mongiovì, Alberico Parente, Lorenzo Grimaldi, Blerta Kertusha, Anna Carraro, Raffaella Marocco, Giulia Mancarella, Cosmo Del Borgo, Maria Dorrucci, Miriam Lichtner, Giorgio Mangino, Giovanna Romeo","doi":"10.1089/vim.2024.0065","DOIUrl":null,"url":null,"abstract":"<p><p>Following viral infection, antigen-restricted T lymphocytes are activated and recognize infected cells to eliminate them. A subset of T cells differentiates into memory lymphocytes able to counteract viral rechallenge in a faster and enhanced way. SARS-CoV-2 can escape immune responses leading to a poor clinical outcome. Immune escape can be associated with the failure of the development of T cell memory compartments. The aim of this study is to characterize the T memory subsets and to test the immune response against class I- and II-restricted immunodominant epitopes shared by ancestral and SARS-CoV-2 variants strains. T memory subsets and recognition of SARS-CoV-2S Spike-specific epitopes were analyzed by flow cytometry on 14 fully vaccinated healthy donors (HDV) and 18 COVID-19 recovered patients (CD). The results obtained showed that CD8+ T naïve subset numbers decreased in association with a significant increase of the effector memory T cell subset whereas there was a small increase in the percentage of SARS-CoV-2 antigen-restricted T clones in both CD4<sup>+</sup> and CD8+ subset in the CD compared to HDV sample. Collectively, these features may reflect a broader cytotoxic T cell repertoire stimulated by the virus during the natural infection compared to the spike-restricted response activated during vaccination.</p>","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":" ","pages":"440-445"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2024.0065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Following viral infection, antigen-restricted T lymphocytes are activated and recognize infected cells to eliminate them. A subset of T cells differentiates into memory lymphocytes able to counteract viral rechallenge in a faster and enhanced way. SARS-CoV-2 can escape immune responses leading to a poor clinical outcome. Immune escape can be associated with the failure of the development of T cell memory compartments. The aim of this study is to characterize the T memory subsets and to test the immune response against class I- and II-restricted immunodominant epitopes shared by ancestral and SARS-CoV-2 variants strains. T memory subsets and recognition of SARS-CoV-2S Spike-specific epitopes were analyzed by flow cytometry on 14 fully vaccinated healthy donors (HDV) and 18 COVID-19 recovered patients (CD). The results obtained showed that CD8+ T naïve subset numbers decreased in association with a significant increase of the effector memory T cell subset whereas there was a small increase in the percentage of SARS-CoV-2 antigen-restricted T clones in both CD4+ and CD8+ subset in the CD compared to HDV sample. Collectively, these features may reflect a broader cytotoxic T cell repertoire stimulated by the virus during the natural infection compared to the spike-restricted response activated during vaccination.
病毒感染后,抗原受限的 T 淋巴细胞会被激活,识别受感染的细胞并将其清除。一部分 T 细胞分化成记忆淋巴细胞,能够以更快和更强的方式对抗病毒的再次侵袭。SARS-CoV-2 可逃避免疫反应,导致不良的临床结果。免疫逃逸可能与 T 细胞记忆区发育失败有关。本研究的目的是确定 T 记忆亚群的特征,并测试针对祖先株和 SARS-CoV-2 变异株共有的 I 类和 II 类限制性免疫优势表位的免疫反应。流式细胞术分析了 14 名完全接种疫苗的健康供体(HDV)和 18 名 COVID-19 恢复期患者(CD)的 T 记忆亚群和对 SARS-CoV-2S Spike 特异性表位的识别。结果显示,与 HDV 样本相比,CD 样本中 CD4+ 和 CD8+ 亚群中 SARS-CoV-2 抗原受限 T 克隆的百分比略有增加。总的来说,这些特征可能反映了与疫苗接种期间激活的尖峰限制反应相比,自然感染期间病毒刺激的细胞毒性 T 细胞更广泛。
期刊介绍:
Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines.
Viral Immunology coverage includes:
Human and animal viral immunology
Research and development of viral vaccines, including field trials
Immunological characterization of viral components
Virus-based immunological diseases, including autoimmune syndromes
Pathogenic mechanisms
Viral diagnostics
Tumor and cancer immunology with virus as the primary factor
Viral immunology methods.