Jillian Cwycyshyn, Cooper Stansbury, Walter Meixner, James B Hoying, Lindsey A Muir, Indika Rajapakse
{"title":"A programmable platform for probing cell migration and proliferation.","authors":"Jillian Cwycyshyn, Cooper Stansbury, Walter Meixner, James B Hoying, Lindsey A Muir, Indika Rajapakse","doi":"10.1063/5.0209547","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of advanced robotic platforms and workflow automation tools has revolutionized the landscape of biological research, offering unprecedented levels of precision, reproducibility, and versatility in experimental design. In this work, we present an automated and modular workflow for exploring cell behavior in two-dimensional culture systems. By integrating the BioAssemblyBot<sup>®</sup> (BAB) robotic platform and the BioApps™ workflow automater with live-cell fluorescence microscopy, our workflow facilitates execution and analysis of <i>in vitro</i> migration and proliferation assays. Robotic assistance and automation allow for the precise and reproducible creation of highly customizable cell-free zones (CFZs), or wounds, in cell monolayers and \"hands-free,\" schedulable integration with real-time monitoring systems for cellular dynamics. CFZs are designed as computer-aided design models and recreated in confluent cell layers by the BAB 3D-Bioprinting tool. The dynamics of migration and proliferation are evaluated in individual cells using live-cell fluorescence microscopy and an in-house pipeline for image processing and single-cell tracking. Our robotics-assisted approach outperforms manual scratch assays with enhanced reproducibility, adaptability, and precision. The incorporation of automation further facilitates increased flexibility in wound geometry and allows for many experimental conditions to be analyzed in parallel. Unlike traditional cell migration assays, our workflow offers an adjustable platform that can be tailored to a wide range of applications with high-throughput capability. The key features of this system, including its scalability, versatility, and the ability to maintain a high degree of experimental control, position it as a valuable tool for researchers across various disciplines.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"8 4","pages":"046106"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0209547","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of advanced robotic platforms and workflow automation tools has revolutionized the landscape of biological research, offering unprecedented levels of precision, reproducibility, and versatility in experimental design. In this work, we present an automated and modular workflow for exploring cell behavior in two-dimensional culture systems. By integrating the BioAssemblyBot® (BAB) robotic platform and the BioApps™ workflow automater with live-cell fluorescence microscopy, our workflow facilitates execution and analysis of in vitro migration and proliferation assays. Robotic assistance and automation allow for the precise and reproducible creation of highly customizable cell-free zones (CFZs), or wounds, in cell monolayers and "hands-free," schedulable integration with real-time monitoring systems for cellular dynamics. CFZs are designed as computer-aided design models and recreated in confluent cell layers by the BAB 3D-Bioprinting tool. The dynamics of migration and proliferation are evaluated in individual cells using live-cell fluorescence microscopy and an in-house pipeline for image processing and single-cell tracking. Our robotics-assisted approach outperforms manual scratch assays with enhanced reproducibility, adaptability, and precision. The incorporation of automation further facilitates increased flexibility in wound geometry and allows for many experimental conditions to be analyzed in parallel. Unlike traditional cell migration assays, our workflow offers an adjustable platform that can be tailored to a wide range of applications with high-throughput capability. The key features of this system, including its scalability, versatility, and the ability to maintain a high degree of experimental control, position it as a valuable tool for researchers across various disciplines.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology