{"title":"MegaLMM improves genomic predictions in new environments using environmental covariates.","authors":"Haixiao Hu, Renaud Rincent, Daniel E Runcie","doi":"10.1093/genetics/iyae171","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-environment trials (METs) are crucial for identifying varieties that perform well across a target population of environments (TPE). However, METs are typically too small to sufficiently represent all relevant environment-types, and face challenges from changing environment-types due to climate change. Statistical methods that enable prediction of variety performance for new environments beyond the METs are needed. We recently developed MegaLMM, a statistical model that can leverage hundreds of trials to significantly improve genetic value prediction accuracy within METs. Here, we extend MegaLMM to enable genomic prediction in new environments by learning regressions of latent factor loadings on Environmental Covariates (ECs) across trials. We evaluated the extended MegaLMM using the maize Genome-To-Fields dataset, consisting of 4402 varieties cultivated in 195 trials with 87.1\\% of phenotypic values missing, and demonstrated its high accuracy in genomic prediction under various breeding scenarios. Furthermore, we showcased MegaLMM's superiority over univariate GBLUP in predicting trait performance of experimental genotypes in new environments. Finally, we explored the use of higher-dimensional quantitative ECs and discussed when and how detailed environmental data can be leveraged for genomic prediction from METs. We propose that MegaLMM can be applied to plant breeding of diverse crops and different fields of genetics where large-scale linear mixed models are utilized.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae171","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-environment trials (METs) are crucial for identifying varieties that perform well across a target population of environments (TPE). However, METs are typically too small to sufficiently represent all relevant environment-types, and face challenges from changing environment-types due to climate change. Statistical methods that enable prediction of variety performance for new environments beyond the METs are needed. We recently developed MegaLMM, a statistical model that can leverage hundreds of trials to significantly improve genetic value prediction accuracy within METs. Here, we extend MegaLMM to enable genomic prediction in new environments by learning regressions of latent factor loadings on Environmental Covariates (ECs) across trials. We evaluated the extended MegaLMM using the maize Genome-To-Fields dataset, consisting of 4402 varieties cultivated in 195 trials with 87.1\% of phenotypic values missing, and demonstrated its high accuracy in genomic prediction under various breeding scenarios. Furthermore, we showcased MegaLMM's superiority over univariate GBLUP in predicting trait performance of experimental genotypes in new environments. Finally, we explored the use of higher-dimensional quantitative ECs and discussed when and how detailed environmental data can be leveraged for genomic prediction from METs. We propose that MegaLMM can be applied to plant breeding of diverse crops and different fields of genetics where large-scale linear mixed models are utilized.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.