Jacob D Washburn, José Ignacio Varela, Alencar Xavier, Qiuyue Chen, David Ertl, Joseph L Gage, James B Holland, Dayane Cristina Lima, Maria Cinta Romay, Marco Lopez-Cruz, Gustavo de Los Campos, Wesley Barber, Cristiano Zimmer, Ignacio Trucillo Silva, Fabiani Rocha, Renaud Rincent, Baber Ali, Haixiao Hu, Daniel E Runcie, Kirill Gusev, Andrei Slabodkin, Phillip Bax, Julie Aubert, Hugo Gangloff, Tristan Mary-Huard, Theodore Vanrenterghem, Carles Quesada-Traver, Steven Yates, Daniel Ariza-Suárez, Argeo Ulrich, Michele Wyler, Daniel R Kick, Emily S Bellis, Jason L Causey, Emilio Soriano Chavez, Yixing Wang, Ved Piyush, Gayara D Fernando, Robert K Hu, Rachit Kumar, Annan J Timon, Rasika Venkatesh, Kenia Segura Abá, Huan Chen, Thilanka Ranaweera, Shin-Han Shiu, Peiran Wang, Max J Gordon, B K Amos, Sebastiano Busato, Daniel Perondi, Abhishek Gogna, Dennis Psaroudakis, C P James Chen, Hawlader A Al-Mamun, Monica F Danilevicz, Shriprabha R Upadhyaya, David Edwards, Natalia de Leon
{"title":"Global Genotype by Environment Prediction Competition Reveals That Diverse Modeling Strategies Can Deliver Satisfactory Maize Yield Estimates.","authors":"Jacob D Washburn, José Ignacio Varela, Alencar Xavier, Qiuyue Chen, David Ertl, Joseph L Gage, James B Holland, Dayane Cristina Lima, Maria Cinta Romay, Marco Lopez-Cruz, Gustavo de Los Campos, Wesley Barber, Cristiano Zimmer, Ignacio Trucillo Silva, Fabiani Rocha, Renaud Rincent, Baber Ali, Haixiao Hu, Daniel E Runcie, Kirill Gusev, Andrei Slabodkin, Phillip Bax, Julie Aubert, Hugo Gangloff, Tristan Mary-Huard, Theodore Vanrenterghem, Carles Quesada-Traver, Steven Yates, Daniel Ariza-Suárez, Argeo Ulrich, Michele Wyler, Daniel R Kick, Emily S Bellis, Jason L Causey, Emilio Soriano Chavez, Yixing Wang, Ved Piyush, Gayara D Fernando, Robert K Hu, Rachit Kumar, Annan J Timon, Rasika Venkatesh, Kenia Segura Abá, Huan Chen, Thilanka Ranaweera, Shin-Han Shiu, Peiran Wang, Max J Gordon, B K Amos, Sebastiano Busato, Daniel Perondi, Abhishek Gogna, Dennis Psaroudakis, C P James Chen, Hawlader A Al-Mamun, Monica F Danilevicz, Shriprabha R Upadhyaya, David Edwards, Natalia de Leon","doi":"10.1093/genetics/iyae195","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting phenotypes from a combination of genetic and environmental factors is a grand challenge of modern biology. Slight improvements in this area have the potential to save lives, improve food and fuel security, permit better care of the planet, and create other positive outcomes. In 2022 and 2023 the first open-to-the-public Genomes to Fields (G2F) initiative Genotype by Environment (GxE) prediction competition was held using a large dataset including genomic variation, phenotype and weather measurements and field management notes, gathered by the project over nine years. The competition attracted registrants from around the world with representation from academic, government, industry, and non-profit institutions as well as unaffiliated. These participants came from diverse disciplines include plant science, animal science, breeding, statistics, computational biology and others. Some participants had no formal genetics or plant-related training, and some were just beginning their graduate education. The teams applied varied methods and strategies, providing a wealth of modeling knowledge based on a common dataset. The winner's strategy involved two models combining machine learning and traditional breeding tools: one model emphasized environment using features extracted by Random Forest, Ridge Regression and Least-squares, and one focused on genetics. Other high-performing teams' methods included quantitative genetics, machine learning/deep learning, mechanistic models, and model ensembles. The dataset factors used, such as genetics; weather; and management data, were also diverse, demonstrating that no single model or strategy is far superior to all others within the context of this competition.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae195","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting phenotypes from a combination of genetic and environmental factors is a grand challenge of modern biology. Slight improvements in this area have the potential to save lives, improve food and fuel security, permit better care of the planet, and create other positive outcomes. In 2022 and 2023 the first open-to-the-public Genomes to Fields (G2F) initiative Genotype by Environment (GxE) prediction competition was held using a large dataset including genomic variation, phenotype and weather measurements and field management notes, gathered by the project over nine years. The competition attracted registrants from around the world with representation from academic, government, industry, and non-profit institutions as well as unaffiliated. These participants came from diverse disciplines include plant science, animal science, breeding, statistics, computational biology and others. Some participants had no formal genetics or plant-related training, and some were just beginning their graduate education. The teams applied varied methods and strategies, providing a wealth of modeling knowledge based on a common dataset. The winner's strategy involved two models combining machine learning and traditional breeding tools: one model emphasized environment using features extracted by Random Forest, Ridge Regression and Least-squares, and one focused on genetics. Other high-performing teams' methods included quantitative genetics, machine learning/deep learning, mechanistic models, and model ensembles. The dataset factors used, such as genetics; weather; and management data, were also diverse, demonstrating that no single model or strategy is far superior to all others within the context of this competition.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.