Lili Chen, Melvin Rodriguez-Heredia, Guy T Hanke, Alexander V Ruban
{"title":"Distinct features of PsbS essential for mediating plant photoprotection.","authors":"Lili Chen, Melvin Rodriguez-Heredia, Guy T Hanke, Alexander V Ruban","doi":"10.1016/j.xplc.2024.101179","DOIUrl":null,"url":null,"abstract":"<p><p>For optimum photosynthetic productivity it is crucial for plants to swiftly transition between light harvesting and photoprotective states as light conditions change in the field. The PsbS protein plays a pivotal role in this process by switching the light harvesting antenna, LHCII, into the photoprotective state, qE, to avoid photoinhibition in high light environment. However, the molecular mechanism of PsbS action upon LHCII have remained unclear. In our study, we identified its specific aminoacid domains that are essential for the function. Using the aminoacid point-mutagenesis of PsbS in vivo we found that the activation of photoprotection involves dynamic changes in the oligomeric state and conformation of PsbS, with two residues, E67 and E173, playing a key role in this process. Further, the replacement of hydrophobic phenylalanine residues in transmembrane helixes II (F83, F84, F87) and IV (F191, F193, F194) with tyrosine revealed that phenylalanine localised in helix IV could play a significant role in hydrophobic interactions of PsbS with LHCII. The removal of the 3<sub>10</sub> helix (H3) aminoacids I74, Y75, E76 did not affect the amplitude but resulted in a strongly delayed recovery of qE in darkness. These findings provide new insights into the molecular architecture of PsbS that are essential for regulating light harvesting in higher plants. Moreover, the combination of experimental mutagenesis with AI-assisted protein folding evolutionary scale model approach (ESMFold) opens new avenues for intelligently manipulating protein functions in silico to streamline and evaluate the experimental point mutagenesis strategies.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101179","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For optimum photosynthetic productivity it is crucial for plants to swiftly transition between light harvesting and photoprotective states as light conditions change in the field. The PsbS protein plays a pivotal role in this process by switching the light harvesting antenna, LHCII, into the photoprotective state, qE, to avoid photoinhibition in high light environment. However, the molecular mechanism of PsbS action upon LHCII have remained unclear. In our study, we identified its specific aminoacid domains that are essential for the function. Using the aminoacid point-mutagenesis of PsbS in vivo we found that the activation of photoprotection involves dynamic changes in the oligomeric state and conformation of PsbS, with two residues, E67 and E173, playing a key role in this process. Further, the replacement of hydrophobic phenylalanine residues in transmembrane helixes II (F83, F84, F87) and IV (F191, F193, F194) with tyrosine revealed that phenylalanine localised in helix IV could play a significant role in hydrophobic interactions of PsbS with LHCII. The removal of the 310 helix (H3) aminoacids I74, Y75, E76 did not affect the amplitude but resulted in a strongly delayed recovery of qE in darkness. These findings provide new insights into the molecular architecture of PsbS that are essential for regulating light harvesting in higher plants. Moreover, the combination of experimental mutagenesis with AI-assisted protein folding evolutionary scale model approach (ESMFold) opens new avenues for intelligently manipulating protein functions in silico to streamline and evaluate the experimental point mutagenesis strategies.
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.