Adding the third dimension: 3D convolutional neural network diagnosis of temporal lobe epilepsy.

IF 4.1 Q1 CLINICAL NEUROLOGY Brain communications Pub Date : 2024-10-10 eCollection Date: 2024-01-01 DOI:10.1093/braincomms/fcae346
Erik Kaestner, Reihaneh Hassanzadeh, Ezequiel Gleichgerrcht, Kyle Hasenstab, Rebecca W Roth, Allen Chang, Theodor Rüber, Kathryn A Davis, Patricia Dugan, Ruben Kuzniecky, Julius Fridriksson, Alexandra Parashos, Anto I Bagić, Daniel L Drane, Simon S Keller, Vince D Calhoun, Anees Abrol, Leonardo Bonilha, Carrie R McDonald
{"title":"Adding the third dimension: 3D convolutional neural network diagnosis of temporal lobe epilepsy.","authors":"Erik Kaestner, Reihaneh Hassanzadeh, Ezequiel Gleichgerrcht, Kyle Hasenstab, Rebecca W Roth, Allen Chang, Theodor Rüber, Kathryn A Davis, Patricia Dugan, Ruben Kuzniecky, Julius Fridriksson, Alexandra Parashos, Anto I Bagić, Daniel L Drane, Simon S Keller, Vince D Calhoun, Anees Abrol, Leonardo Bonilha, Carrie R McDonald","doi":"10.1093/braincomms/fcae346","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural networks (CNN) show great promise for translating decades of research on structural abnormalities in temporal lobe epilepsy into clinical practice. Three-dimensional CNNs typically outperform two-dimensional CNNs in medical imaging. Here we explore for the first time whether a three-dimensional CNN outperforms a two-dimensional CNN for identifying temporal lobe epilepsy-specific features on MRI. Using 1178 T1-weighted images (589 temporal lobe epilepsy, 589 healthy controls) from 12 surgical centres, we trained 3D and 2D CNNs for temporal lobe epilepsy versus healthy control classification, using feature visualization to identify important regions. The 3D CNN was compared to the 2D model and to a randomized model (comparison to chance). Further, we explored the effect of sample size with subsampling, examined model performance based on single-subject clinical characteristics, and tested the impact of image harmonization on model performance. Across 50 datapoints (10 runs with 5-folds each) the 3D CNN median accuracy was 86.4% (35.3% above chance) and the median <i>F</i>1-score was 86.1% (33.3% above chance). The 3D model yielded higher accuracy compared to the 2D model on 84% of datapoints (median 2D accuracy, 83.0%), a significant outperformance for the 3D model (binomial test: <i>P</i> < 0.001). This advantage of the 3D model was only apparent at the highest sample size. Saliency maps exhibited the importance of medial-ventral temporal, cerebellar, and midline subcortical regions across both models for classification. However, the 3D model had higher salience in the most important regions, the ventral-medial temporal and midline subcortical regions. Importantly, the model achieved high accuracy (82% accuracy) even in patients without MRI-identifiable hippocampal sclerosis. Finally, applying ComBat for harmonization did not improve performance. These findings highlight the value of 3D CNNs for identifying subtle structural abnormalities on MRI, especially in patients without clinically identified temporal lobe epilepsy lesions. Our findings also reveal that the advantage of 3D CNNs relies on large sample sizes for model training.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcae346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNN) show great promise for translating decades of research on structural abnormalities in temporal lobe epilepsy into clinical practice. Three-dimensional CNNs typically outperform two-dimensional CNNs in medical imaging. Here we explore for the first time whether a three-dimensional CNN outperforms a two-dimensional CNN for identifying temporal lobe epilepsy-specific features on MRI. Using 1178 T1-weighted images (589 temporal lobe epilepsy, 589 healthy controls) from 12 surgical centres, we trained 3D and 2D CNNs for temporal lobe epilepsy versus healthy control classification, using feature visualization to identify important regions. The 3D CNN was compared to the 2D model and to a randomized model (comparison to chance). Further, we explored the effect of sample size with subsampling, examined model performance based on single-subject clinical characteristics, and tested the impact of image harmonization on model performance. Across 50 datapoints (10 runs with 5-folds each) the 3D CNN median accuracy was 86.4% (35.3% above chance) and the median F1-score was 86.1% (33.3% above chance). The 3D model yielded higher accuracy compared to the 2D model on 84% of datapoints (median 2D accuracy, 83.0%), a significant outperformance for the 3D model (binomial test: P < 0.001). This advantage of the 3D model was only apparent at the highest sample size. Saliency maps exhibited the importance of medial-ventral temporal, cerebellar, and midline subcortical regions across both models for classification. However, the 3D model had higher salience in the most important regions, the ventral-medial temporal and midline subcortical regions. Importantly, the model achieved high accuracy (82% accuracy) even in patients without MRI-identifiable hippocampal sclerosis. Finally, applying ComBat for harmonization did not improve performance. These findings highlight the value of 3D CNNs for identifying subtle structural abnormalities on MRI, especially in patients without clinically identified temporal lobe epilepsy lesions. Our findings also reveal that the advantage of 3D CNNs relies on large sample sizes for model training.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增加第三个维度:颞叶癫痫的三维卷积神经网络诊断。
卷积神经网络(CNN)在将数十年来有关颞叶癫痫结构异常的研究成果转化为临床实践方面大有可为。在医学成像领域,三维卷积神经网络通常优于二维卷积神经网络。在此,我们首次探讨了三维 CNN 在识别 MRI 上的颞叶癫痫特异性特征方面是否优于二维 CNN。利用来自 12 个外科中心的 1178 张 T1 加权图像(589 张颞叶癫痫,589 张健康对照),我们训练了三维和二维 CNN,用于颞叶癫痫与健康对照分类,并使用特征可视化来识别重要区域。三维 CNN 与二维模型和随机模型进行了比较(与偶然性比较)。此外,我们还探索了子采样对样本量的影响,根据单个受试者的临床特征检验了模型性能,并测试了图像协调对模型性能的影响。在 50 个数据点中(10 次运行,每次 5 折),三维 CNN 的中位准确率为 86.4%(比概率高 35.3%),中位 F1 分数为 86.1%(比概率高 33.3%)。与二维模型相比,三维模型在 84% 的数据点上获得了更高的准确率(二维准确率中位数为 83.0%),三维模型的表现明显优于二维模型(二项式检验:P < 0.001)。三维模型的这一优势只有在样本量最大时才会显现出来。Saliency 地图显示,在两种模型的分类中,颞叶内侧-腹侧、小脑和皮层下中线区域都很重要。然而,三维模型在最重要的区域,即颞叶腹内侧和皮层下中线区域的显著性更高。重要的是,即使在没有磁共振成像可识别海马硬化的患者中,该模型也能达到很高的准确率(82%)。最后,应用 ComBat 进行协调并未提高性能。这些发现凸显了三维 CNN 在识别 MRI 上细微结构异常方面的价值,尤其是在没有临床识别出颞叶癫痫病灶的患者中。我们的研究结果还表明,三维 CNN 的优势依赖于模型训练的大样本量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
Cerebellar activity in hemi-parkinsonian rats during volitional gait and freezing. Cerebellar activity in PINK1 knockout rats during volitional gait. Enhanced MRI-based brain tumour classification with a novel Pix2pix generative adversarial network augmentation framework. The spine-brain axis: is spinal anatomy associated with brain volume? A glycan biomarker predicts cognitive decline in amyloid- and tau-negative patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1