Recent Advances in Cyclodextrin-Based Nanoscale Drug Delivery Systems.

Fuat Topuz, Tamer Uyar
{"title":"Recent Advances in Cyclodextrin-Based Nanoscale Drug Delivery Systems.","authors":"Fuat Topuz, Tamer Uyar","doi":"10.1002/wnan.1995","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclodextrins (CDs) belong to a class of cyclic oligosaccharides characterized by their toroidal shape consisting of glucose units linked via α-1,4-glycosidic bonds. This distinctive toroidal shape exhibits a dual nature, comprising a hydrophobic interior and a hydrophilic exterior, making CDs highly versatile in various pharmaceutical products. They serve multiple roles: they act as solubilizers, stabilizers, controlled release promoters, enhancers of drug bioavailability, and effective means of masking undesirable tastes and odors. Taking advantage of these inherent benefits, CDs have been integrated into numerous nanoscale drug delivery systems. The resulting nanomaterials exploit the exceptional properties of CDs, including their ability to solubilize hydrophobic drugs for substantial drug loading, engage in supramolecular complexation for engineered nanomaterials, increase bioavailability for improved therapeutic efficacy, stabilize labile drugs, and exhibit biocompatibility and versatility. This paper compiles recent studies on CD functional nanoscale drug delivery platforms. First, we described the physicochemical and toxicological aspects of CDs, CD/drug inclusion complexation, and their impact on improving drug bioavailability. We then summarized applications for CD-functional nano delivery systems based on polymeric, hybrid, lipid-based nanoparticles, and CD-based nanofibers. Particular interest was in the targeted applications and the function of the CD molecules used. In most applications, CD molecules were used for drug solubilization and loading, while in some studies, CD molecules were employed for supramolecular complexation to construct nanoscale drug delivery systems. Finally, the review concludes with a thoughtful consideration of the current challenges and outlook.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 6","pages":"e1995"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wnan.1995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclodextrins (CDs) belong to a class of cyclic oligosaccharides characterized by their toroidal shape consisting of glucose units linked via α-1,4-glycosidic bonds. This distinctive toroidal shape exhibits a dual nature, comprising a hydrophobic interior and a hydrophilic exterior, making CDs highly versatile in various pharmaceutical products. They serve multiple roles: they act as solubilizers, stabilizers, controlled release promoters, enhancers of drug bioavailability, and effective means of masking undesirable tastes and odors. Taking advantage of these inherent benefits, CDs have been integrated into numerous nanoscale drug delivery systems. The resulting nanomaterials exploit the exceptional properties of CDs, including their ability to solubilize hydrophobic drugs for substantial drug loading, engage in supramolecular complexation for engineered nanomaterials, increase bioavailability for improved therapeutic efficacy, stabilize labile drugs, and exhibit biocompatibility and versatility. This paper compiles recent studies on CD functional nanoscale drug delivery platforms. First, we described the physicochemical and toxicological aspects of CDs, CD/drug inclusion complexation, and their impact on improving drug bioavailability. We then summarized applications for CD-functional nano delivery systems based on polymeric, hybrid, lipid-based nanoparticles, and CD-based nanofibers. Particular interest was in the targeted applications and the function of the CD molecules used. In most applications, CD molecules were used for drug solubilization and loading, while in some studies, CD molecules were employed for supramolecular complexation to construct nanoscale drug delivery systems. Finally, the review concludes with a thoughtful consideration of the current challenges and outlook.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于环糊精的纳米级给药系统的最新进展。
环糊精(CD)属于一类环状低聚糖,其特征是由通过α-1,4-糖苷键连接的葡萄糖单元组成的环状形状。这种独特的环形具有双重性质,内部疏水,外部亲水,因此 CDs 在各种医药产品中用途广泛。它们具有多种作用:增溶剂、稳定剂、控释促进剂、药物生物利用度增强剂以及掩盖不良味道和气味的有效手段。利用这些固有优势,CD 已被集成到众多纳米级给药系统中。由此产生的纳米材料利用了光盘的特殊性能,包括溶解疏水性药物以实现大量药物负载的能力、参与超分子复合以形成工程纳米材料的能力、提高生物利用度以改善疗效的能力、稳定易溶药物的能力,以及表现出生物相容性和多功能性的能力。本文综述了近期有关 CD 功能性纳米级给药平台的研究。首先,我们介绍了 CD 的物理化学和毒理学方面、CD/药物包合物复合及其对提高药物生物利用度的影响。然后,我们总结了基于聚合物、混合、脂质纳米颗粒和 CD 纳米纤维的 CD 功能纳米给药系统的应用。目标应用和所用 CD 分子的功能尤其引人关注。在大多数应用中,CD 分子被用于药物增溶和负载,而在一些研究中,CD 分子被用于超分子复合,以构建纳米级药物输送系统。最后,本综述对当前的挑战和前景进行了深思熟虑的总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.60
自引率
0.00%
发文量
0
期刊最新文献
Iron-Based Nanomaterials for Modulating Tumor Microenvironment. Polymers for mRNA Delivery. Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles. Recent Advances in Wearable Sweat Sensor Development. Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1