Frank copula is minimum information copula under fixed Kendall’s τ

Pub Date : 2024-10-26 DOI:10.1016/j.spl.2024.110289
Issey Sukeda , Tomonari Sei
{"title":"Frank copula is minimum information copula under fixed Kendall’s τ","authors":"Issey Sukeda ,&nbsp;Tomonari Sei","doi":"10.1016/j.spl.2024.110289","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we demonstrate that the Frank copula is the minimum information copula under fixed Kendall’s <span><math><mi>τ</mi></math></span> (MICK), both theoretically and numerically. First, we explain that both MICK and the Frank density follow the hyperbolic Liouville equation. Subsequently, we show that the copula density satisfying the Liouville equation is uniquely the Frank copula. Our result asserts that selecting the Frank copula as an appropriate copula model is equivalent to using Kendall’s <span><math><mi>τ</mi></math></span> as the sole available information about the true distribution, based on the entropy maximization principle.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016771522400258X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we demonstrate that the Frank copula is the minimum information copula under fixed Kendall’s τ (MICK), both theoretically and numerically. First, we explain that both MICK and the Frank density follow the hyperbolic Liouville equation. Subsequently, we show that the copula density satisfying the Liouville equation is uniquely the Frank copula. Our result asserts that selecting the Frank copula as an appropriate copula model is equivalent to using Kendall’s τ as the sole available information about the true distribution, based on the entropy maximization principle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
在固定的 Kendall's τ 条件下,弗兰克协程是最小信息协程。
在这项工作中,我们从理论和数值两方面证明了弗兰克协整是固定肯德尔τ(MICK)条件下的最小信息协整。首先,我们解释了 MICK 和 Frank 密度都遵循双曲 Liouville 方程。随后,我们证明满足 Liouville 方程的 copula 密度是唯一的 Frank copula。我们的结果证明,根据熵最大化原则,选择 Frank copula 作为合适的 copula 模型等同于使用 Kendall's τ 作为关于真实分布的唯一可用信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1