Pulakesh Das , Parinaz Rahimzadeh-Bajgiran , William Livingston , Cameron D. McIntire , Aaron Bergdahl
{"title":"Modeling forest canopy structure and developing a stand health index using satellite remote sensing","authors":"Pulakesh Das , Parinaz Rahimzadeh-Bajgiran , William Livingston , Cameron D. McIntire , Aaron Bergdahl","doi":"10.1016/j.ecoinf.2024.102864","DOIUrl":null,"url":null,"abstract":"<div><div>Biotic and abiotic disturbances modify tree structure and degrade stand health. Accurate geospatial data on stand structure is important for monitoring tree growth, forest health, progression and severity of diseases and pests, and estimating resilience to climate stress. The live crown ratio (LCR) of trees serves as a key health indicator but has been understudied at the landscape level using remote sensing data. This study generated the leaf area index (LAI) and a novel spatial layer of LCR at site and landscape scales using a combination of satellite data and ground observations. We conducted field surveys to collect plot-level (10 m × 10 m) data in four eastern white pine (EWP; <em>Pinus strobus L.</em>)-dominated sites in the state of Maine, USA. The plot-level data were used to develop regression models for LAI and LCR estimation using microwave (Sentinel-1) and optical (Sentinel-2) remote sensing data and applying the Random Forest (RF) and Support Vector Machine (SVM) machine learning algorithms. The RF model showed higher prediction accuracy than the SVM model at the site level. Moreover, the prediction accuracy at the site and landscape levels were comparable for LAI (R<sup>2</sup> > 0.76) and LCR (R<sup>2</sup> > 0.71) using the RF model. Furthermore, the predicted LAI and LCR were integrated with canopy height and stand density to develop a novel health index map for EWP. The resulting health index map successfully delineated patches representing various health categories. Forestry practitioners and decision-makers can use the derived health index map and intermediate spatial data layers (LAI and LCR) to guide stand management. The developed framework can potentially be applied to other coniferous and broadleaved species for remote sensing-based LCR estimation and forest health assessment upon further studies and verification.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004060","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biotic and abiotic disturbances modify tree structure and degrade stand health. Accurate geospatial data on stand structure is important for monitoring tree growth, forest health, progression and severity of diseases and pests, and estimating resilience to climate stress. The live crown ratio (LCR) of trees serves as a key health indicator but has been understudied at the landscape level using remote sensing data. This study generated the leaf area index (LAI) and a novel spatial layer of LCR at site and landscape scales using a combination of satellite data and ground observations. We conducted field surveys to collect plot-level (10 m × 10 m) data in four eastern white pine (EWP; Pinus strobus L.)-dominated sites in the state of Maine, USA. The plot-level data were used to develop regression models for LAI and LCR estimation using microwave (Sentinel-1) and optical (Sentinel-2) remote sensing data and applying the Random Forest (RF) and Support Vector Machine (SVM) machine learning algorithms. The RF model showed higher prediction accuracy than the SVM model at the site level. Moreover, the prediction accuracy at the site and landscape levels were comparable for LAI (R2 > 0.76) and LCR (R2 > 0.71) using the RF model. Furthermore, the predicted LAI and LCR were integrated with canopy height and stand density to develop a novel health index map for EWP. The resulting health index map successfully delineated patches representing various health categories. Forestry practitioners and decision-makers can use the derived health index map and intermediate spatial data layers (LAI and LCR) to guide stand management. The developed framework can potentially be applied to other coniferous and broadleaved species for remote sensing-based LCR estimation and forest health assessment upon further studies and verification.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.