Corrosion behavior and microstructural effects on passivation film mechanisms in forged Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy under laser surface remelting
{"title":"Corrosion behavior and microstructural effects on passivation film mechanisms in forged Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy under laser surface remelting","authors":"","doi":"10.1016/j.corsci.2024.112542","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the corrosion behavior of Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511), comparing forged and LSRed (laser surface remelting) samples. LSR via 0.02 mm laser interval eliminates surface macro defects, enhances element homogenization, and converts primary and secondary α to β on forged Ti-55511 surface, yielding a thicker passivation film with higher stability than that of as-forged counterpart. This study investigates corrosion mechanisms by comparing the phase type, elemental homogeneity, grain size, morphology, and defects in relation to corrosion behavior. Galvanic corrosion predominates in the as-forged sample, with intensified pitting on the α phase and oxygen accumulation near α/β phase interface, while LSR-treated sample experiences β grain boundary corrosion.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24007376","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the corrosion behavior of Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511), comparing forged and LSRed (laser surface remelting) samples. LSR via 0.02 mm laser interval eliminates surface macro defects, enhances element homogenization, and converts primary and secondary α to β on forged Ti-55511 surface, yielding a thicker passivation film with higher stability than that of as-forged counterpart. This study investigates corrosion mechanisms by comparing the phase type, elemental homogeneity, grain size, morphology, and defects in relation to corrosion behavior. Galvanic corrosion predominates in the as-forged sample, with intensified pitting on the α phase and oxygen accumulation near α/β phase interface, while LSR-treated sample experiences β grain boundary corrosion.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.