Transition metal nitride thin films used as the electrodes for lithium-ion batteries and supercapacitors

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-10-30 DOI:10.1016/j.est.2024.114356
Hsu-Sheng Tsai , Zhengguang Shi , Jing Li , Cheng-Te Lin
{"title":"Transition metal nitride thin films used as the electrodes for lithium-ion batteries and supercapacitors","authors":"Hsu-Sheng Tsai ,&nbsp;Zhengguang Shi ,&nbsp;Jing Li ,&nbsp;Cheng-Te Lin","doi":"10.1016/j.est.2024.114356","DOIUrl":null,"url":null,"abstract":"<div><div>The transition metal nitride (TMN) thin films used as the electrodes for lithium-ion batteries (LIBs) and supercapacitors (SCs) have been completely reviewed and systematically discussed in this article. After the introduction of current research status, the energy storage mechanisms in TMN materials are first classified and interpreted. Next, the principles and characteristics of thin film fabrication techniques used to deposit the TMN thin film electrodes are briefly introduced. Then the research results of LIBs and SCs using the TMN thin film electrodes are individually reviewed and discussed in detail. The design considerations for the TMN thin film electrodes applied to LIBs and SCs are summarized according to the case studies. Eventually, it is concluded that the sputtering deposition would be the mainstream technique for the fabrication of thin film electrodes as well as the modification and/or combination of fabrication process may be utilized to improve the electrochemical performance of thin film electrodes. The potential candidates of TMN thin film electrodes for the future development of LIBs and SCs have been announced. The exploitation of solid-state electrochemical energy storage (EES) devices would be the future trend owing to the safety considerations.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24039422","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The transition metal nitride (TMN) thin films used as the electrodes for lithium-ion batteries (LIBs) and supercapacitors (SCs) have been completely reviewed and systematically discussed in this article. After the introduction of current research status, the energy storage mechanisms in TMN materials are first classified and interpreted. Next, the principles and characteristics of thin film fabrication techniques used to deposit the TMN thin film electrodes are briefly introduced. Then the research results of LIBs and SCs using the TMN thin film electrodes are individually reviewed and discussed in detail. The design considerations for the TMN thin film electrodes applied to LIBs and SCs are summarized according to the case studies. Eventually, it is concluded that the sputtering deposition would be the mainstream technique for the fabrication of thin film electrodes as well as the modification and/or combination of fabrication process may be utilized to improve the electrochemical performance of thin film electrodes. The potential candidates of TMN thin film electrodes for the future development of LIBs and SCs have been announced. The exploitation of solid-state electrochemical energy storage (EES) devices would be the future trend owing to the safety considerations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用作锂离子电池和超级电容器电极的过渡金属氮化物薄膜
本文全面回顾并系统讨论了用作锂离子电池(LIB)和超级电容器(SC)电极的过渡金属氮化物(TMN)薄膜。在介绍了研究现状之后,首先对 TMN 材料的储能机制进行了分类和解释。接着,简要介绍了用于沉积 TMN 薄膜电极的薄膜制造技术的原理和特点。然后,逐一回顾并详细讨论了使用 TMN 薄膜电极的 LIB 和 SC 的研究成果。根据案例研究,总结了适用于 LIB 和 SC 的 TMN 薄膜电极的设计注意事项。最后得出的结论是,溅射沉积将是薄膜电极制造的主流技术,也可以利用对制造工艺的修改和/或组合来提高薄膜电极的电化学性能。TMN 薄膜电极是未来开发 LIB 和 SC 的潜在候选材料。出于安全考虑,开发固态电化学储能(EES)装置将是未来的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Green synthesis of SiOx/C-TiO2 with continuous conductive network towards enhancing lithium storage performance Neutral-state black electrochromic polymer with enhanced supercapacitor electrode performance An improved barrier function double integral sliding mode control of SynRM for hybrid energy storage system-based electric vehicle Analysis and prediction of battery temperature in thermal management system coupled SiC foam-composite phase change material and air Role of pumped hydro storage plants for flood control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1