MVP-HOT: A Moderate Visual Prompt for Hyperspectral Object Tracking

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-10-26 DOI:10.1016/j.jvcir.2024.104326
Lin Zhao, Shaoxiong Xie, Jia Li, Ping Tan, Wenjin Hu
{"title":"MVP-HOT: A Moderate Visual Prompt for Hyperspectral Object Tracking","authors":"Lin Zhao,&nbsp;Shaoxiong Xie,&nbsp;Jia Li,&nbsp;Ping Tan,&nbsp;Wenjin Hu","doi":"10.1016/j.jvcir.2024.104326","DOIUrl":null,"url":null,"abstract":"<div><div>The growing attention to hyperspectral object tracking (HOT) can be attributed to the extended spectral information available in hyperspectral images (HSIs), especially in complex scenarios. This potential makes it a promising alternative to traditional RGB-based tracking methods. However, the scarcity of large hyperspectral datasets poses a challenge for training robust hyperspectral trackers using deep learning methods. Prompt learning, a new paradigm emerging in large language models, involves adapting or fine-tuning a pre-trained model for a specific downstream task by providing task-specific inputs. Inspired by the recent success of prompt learning in language and visual tasks, we propose a novel and efficient prompt learning method for HOT tasks, termed Moderate Visual Prompt for HOT (MVP-HOT). Specifically, MVP-HOT freezes the parameters of the pre-trained model and employs HSIs as visual prompts to leverage the knowledge of the underlying RGB model. Additionally, we develop a moderate and effective strategy to incrementally adapt the HSI prompt information. Our proposed method uses only a few (1.7M) learnable parameters and demonstrates its effectiveness through extensive experiments, MVP-HOT can achieve state-of-the-art performance on three hyperspectral datasets.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"105 ","pages":"Article 104326"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002827","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The growing attention to hyperspectral object tracking (HOT) can be attributed to the extended spectral information available in hyperspectral images (HSIs), especially in complex scenarios. This potential makes it a promising alternative to traditional RGB-based tracking methods. However, the scarcity of large hyperspectral datasets poses a challenge for training robust hyperspectral trackers using deep learning methods. Prompt learning, a new paradigm emerging in large language models, involves adapting or fine-tuning a pre-trained model for a specific downstream task by providing task-specific inputs. Inspired by the recent success of prompt learning in language and visual tasks, we propose a novel and efficient prompt learning method for HOT tasks, termed Moderate Visual Prompt for HOT (MVP-HOT). Specifically, MVP-HOT freezes the parameters of the pre-trained model and employs HSIs as visual prompts to leverage the knowledge of the underlying RGB model. Additionally, we develop a moderate and effective strategy to incrementally adapt the HSI prompt information. Our proposed method uses only a few (1.7M) learnable parameters and demonstrates its effectiveness through extensive experiments, MVP-HOT can achieve state-of-the-art performance on three hyperspectral datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MVP-HOT:用于高光谱物体跟踪的适度视觉提示
高光谱物体追踪(HOT)之所以越来越受到关注,是因为高光谱图像(HSIs)中具有扩展的光谱信息,尤其是在复杂的场景中。这种潜力使其成为传统的基于 RGB 的跟踪方法的一种有前途的替代方法。然而,大型高光谱数据集的稀缺给使用深度学习方法训练稳健的高光谱跟踪器带来了挑战。提示学习是大型语言模型中出现的一种新范式,它通过提供特定任务的输入,针对特定下游任务调整或微调预先训练好的模型。受近期提示学习在语言和视觉任务中取得成功的启发,我们为 HOT 任务提出了一种新颖高效的提示学习方法,即适度视觉提示 HOT(MVP-HOT)。具体来说,MVP-HOT 冻结了预训练模型的参数,并采用 HSI 作为视觉提示,以充分利用底层 RGB 模型的知识。此外,我们还开发了一种适度而有效的策略来逐步调整 HSI 提示信息。我们提出的方法只使用了少量(1.7M)可学习参数,并通过大量实验证明了其有效性,MVP-HOT 可以在三个高光谱数据集上实现最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT A memory access number constraint-based string prediction technique for high throughput SCC implemented in AVS3 Faster-slow network fused with enhanced fine-grained features for action recognition Lightweight macro-pixel quality enhancement network for light field images compressed by versatile video coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1