{"title":"Bifunctional catalysis on water splitting reaction by graphitic carbon supported NiO, NiS and NiSe nanoparticles","authors":"Mousumi Mondal , Anirban Ghosh , Sujit Kumar Ghosh , Swapan Kumar Bhattacharya","doi":"10.1016/j.rinma.2024.100625","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we have synthesized NiO, NiS and NiSe nanoparticles by similar hydrothermal method and the electrocatalytic activities of the graphite carbon-supported synthesized materials have been compared in reference to hydrogen and oxygen evolution reactions (HER and OER) in aqueous acidic and alkaline media respectively. The as-synthesized nanoparticles have been characterized by using powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopic studies. The best electrocatalyst, NiSe provides a current density of 10 mA cm<sup>−2</sup> at 259 mV overpotential for OER in 1.0 M KOH, which is superior to that of the state-of-the-art catalyst RuO<sub>2</sub> in the same environment. For HER the best electrocatalyst, NiSe provides a current density of 10 mA cm<sup>−2</sup> at 49.5 mV overpotential in 0.5 M H<sub>2</sub>SO<sub>4</sub>, which is again superior to Pt wire electrode. The order of electrocatalytic activity in both HER and OER has been found to follow the sequence: NiSe > NiS > NiO under the same electrochemical conditions, as have been evident from cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopic studies. While the electrochemical surface area is increased by 16.4 % and 37.3 % on changing the electrocatalyst from NiO to NiS and NiSe respectively, the chronoamperometric current densities are increased by 429 % and 635 % at 0.8 V for OER and 548 % and 9733 % at −0.4V for HER on changing the same materials. Thus, the enhancement in catalytic activity hangs mainly on the material characteristics besides the morphological improvement.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"24 ","pages":"Article 100625"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590048X24000992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we have synthesized NiO, NiS and NiSe nanoparticles by similar hydrothermal method and the electrocatalytic activities of the graphite carbon-supported synthesized materials have been compared in reference to hydrogen and oxygen evolution reactions (HER and OER) in aqueous acidic and alkaline media respectively. The as-synthesized nanoparticles have been characterized by using powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopic studies. The best electrocatalyst, NiSe provides a current density of 10 mA cm−2 at 259 mV overpotential for OER in 1.0 M KOH, which is superior to that of the state-of-the-art catalyst RuO2 in the same environment. For HER the best electrocatalyst, NiSe provides a current density of 10 mA cm−2 at 49.5 mV overpotential in 0.5 M H2SO4, which is again superior to Pt wire electrode. The order of electrocatalytic activity in both HER and OER has been found to follow the sequence: NiSe > NiS > NiO under the same electrochemical conditions, as have been evident from cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopic studies. While the electrochemical surface area is increased by 16.4 % and 37.3 % on changing the electrocatalyst from NiO to NiS and NiSe respectively, the chronoamperometric current densities are increased by 429 % and 635 % at 0.8 V for OER and 548 % and 9733 % at −0.4V for HER on changing the same materials. Thus, the enhancement in catalytic activity hangs mainly on the material characteristics besides the morphological improvement.