Yongfan Zhu , Meng Wu , Wanglin Zhou , Jinkun Tan , Zhicheng Zhang , Guangru Zhang , Zhengkun Liu , Gongping Liu , Wanqin Jin
{"title":"Low chemical-expansion and self-catalytic nickel-substituted strontium cobaltite perovskite four-channel hollow fibre membrane for partial oxidation of methane","authors":"Yongfan Zhu , Meng Wu , Wanglin Zhou , Jinkun Tan , Zhicheng Zhang , Guangru Zhang , Zhengkun Liu , Gongping Liu , Wanqin Jin","doi":"10.1016/j.memsci.2024.123454","DOIUrl":null,"url":null,"abstract":"<div><div>In membrane reactors, the thermo-mechanical stability of the membrane determines the operability of the reaction, while the permeability and catalytic performance dictate the reaction process. A high chemical expansion coefficient can exacerbate the mismatch in the thermal expansion behaviour between the two sides of the membrane, potentially resulting in fracture. The low permeability and slow catalytic activity can slow the reaction process and result in an unsatisfactory product composition. Here, a Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.7</sub>Fe<sub>0.2</sub>Ni<sub>0.1</sub>O<sub>3-δ</sub> (BSCFN) four-channel hollow fibre membrane with a low chemical-expansion and high oxygen permeation flux has been successfully fabricated by phase inversion and a one-step thermal process (OSTP). Reaction sintering during the OSTP forms an NiO <em>in-situ</em> exsolution phase on the membrane surface, and A-site stoichiometry excess occurs, improves the oxygen permeation flux, and provides the membrane with self-catalytic ability during the partial oxidation of methane (POM) reactions. Consequently, the BSCFN membrane shows excellent performance; exhibiting an oxygen flux of 11.75 mL cm<sup>−2</sup>·min<sup>−1</sup> at 900 °C. Furthermore, the self-catalytic BSCFN membrane has a good hydrogen production of 10.1 mL cm<sup>−2</sup>·min<sup>−1</sup> during the POM process, which is 7.5 times higher than that of Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> membranes (1.87 mL cm<sup>−2</sup>·min<sup>−1</sup>). This offers a viable strategy for the development of membrane reactor applications.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123454"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010482","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In membrane reactors, the thermo-mechanical stability of the membrane determines the operability of the reaction, while the permeability and catalytic performance dictate the reaction process. A high chemical expansion coefficient can exacerbate the mismatch in the thermal expansion behaviour between the two sides of the membrane, potentially resulting in fracture. The low permeability and slow catalytic activity can slow the reaction process and result in an unsatisfactory product composition. Here, a Ba0.5Sr0.5Co0.7Fe0.2Ni0.1O3-δ (BSCFN) four-channel hollow fibre membrane with a low chemical-expansion and high oxygen permeation flux has been successfully fabricated by phase inversion and a one-step thermal process (OSTP). Reaction sintering during the OSTP forms an NiO in-situ exsolution phase on the membrane surface, and A-site stoichiometry excess occurs, improves the oxygen permeation flux, and provides the membrane with self-catalytic ability during the partial oxidation of methane (POM) reactions. Consequently, the BSCFN membrane shows excellent performance; exhibiting an oxygen flux of 11.75 mL cm−2·min−1 at 900 °C. Furthermore, the self-catalytic BSCFN membrane has a good hydrogen production of 10.1 mL cm−2·min−1 during the POM process, which is 7.5 times higher than that of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes (1.87 mL cm−2·min−1). This offers a viable strategy for the development of membrane reactor applications.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.