Poly(p-terphenylene piperidinium)s with perfluoroalkyl side chains for high-performance anion exchange membranes

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-10-28 DOI:10.1016/j.memsci.2024.123460
Yu Zhao , Xiaoqian Sun , Tao Wang , Sheng Wang , Haibing Wei , Yunsheng Ding
{"title":"Poly(p-terphenylene piperidinium)s with perfluoroalkyl side chains for high-performance anion exchange membranes","authors":"Yu Zhao ,&nbsp;Xiaoqian Sun ,&nbsp;Tao Wang ,&nbsp;Sheng Wang ,&nbsp;Haibing Wei ,&nbsp;Yunsheng Ding","doi":"10.1016/j.memsci.2024.123460","DOIUrl":null,"url":null,"abstract":"<div><div>Anion exchange membranes (AEMs) are essential components in alkaline polymer electrolyte fuel cells. However, the primary challenges for AMEs in fuel cell applications include insufficient alkaline durability and sluggish ion transport efficiency. In response, we here present a side chain fluorination strategy to construct nanoscale phase-separated morphologies in poly(arylene piperidinium)s, leading to percolated hydrophilic domains with high ion transport efficiency. The synthesized perfluoroheptyl-tethered poly(<em>p</em>-terphenylene piperidinium)s (FPTPs) show an excellent conductivity (175 mS cm<sup>−1</sup> at 80 °C) and a high ion diffusion coefficient (2 × 10<sup>6</sup> cm<sup>2</sup> s<sup>−1</sup> in Cl<sup>−</sup> form membrane at 30 °C) at a relative low ion content (∼2.0 mmol g<sup>−1</sup>). They also show good dimensional stability (&lt;15 % swelling at 80 °C) and improved alkaline stability (2.6 % piperidinium group loss after 1000 h in 1 M NaOH at 80 °C). An H<sub>2</sub>–O<sub>2</sub> fuel cell prototype fabricated with FPTP-15 achieves a high peak power density of 0.89 W cm<sup>−2</sup>. Additionally, short-term cell operation at 50 °C demonstrates good durability of over 100 h at 0.2 A cm<sup>−2</sup>, showing a slight voltage increase of 160 μV h<sup>−1</sup>.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123460"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010548","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anion exchange membranes (AEMs) are essential components in alkaline polymer electrolyte fuel cells. However, the primary challenges for AMEs in fuel cell applications include insufficient alkaline durability and sluggish ion transport efficiency. In response, we here present a side chain fluorination strategy to construct nanoscale phase-separated morphologies in poly(arylene piperidinium)s, leading to percolated hydrophilic domains with high ion transport efficiency. The synthesized perfluoroheptyl-tethered poly(p-terphenylene piperidinium)s (FPTPs) show an excellent conductivity (175 mS cm−1 at 80 °C) and a high ion diffusion coefficient (2 × 106 cm2 s−1 in Cl form membrane at 30 °C) at a relative low ion content (∼2.0 mmol g−1). They also show good dimensional stability (<15 % swelling at 80 °C) and improved alkaline stability (2.6 % piperidinium group loss after 1000 h in 1 M NaOH at 80 °C). An H2–O2 fuel cell prototype fabricated with FPTP-15 achieves a high peak power density of 0.89 W cm−2. Additionally, short-term cell operation at 50 °C demonstrates good durability of over 100 h at 0.2 A cm−2, showing a slight voltage increase of 160 μV h−1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能阴离子交换膜的具有全氟烷基侧链的聚(对三联苯哌啶)s
阴离子交换膜(AEM)是碱性聚合物电解质燃料电池的重要组成部分。然而,阴离子交换膜在燃料电池应用中面临的主要挑战包括碱性耐久性不足和离子传输效率低下。为此,我们在此提出了一种侧链氟化策略,在聚(芳基哌啶)中构建纳米级相分离形态,从而形成具有高离子传输效率的渗透亲水畴。合成的全氟庚基系链聚(对三联苯哌啶)(FPTPs)在离子含量相对较低(∼2.0 mmol g-1)的情况下,表现出优异的导电性(80 °C时为175 mS cm-1)和较高的离子扩散系数(30 °C时Cl-形式膜的离子扩散系数为2 × 106 cm2 s-1)。它们还表现出良好的尺寸稳定性(80 °C 时膨胀 15%)和更高的碱性稳定性(80 °C 时在 1 M NaOH 溶液中 1000 小时后哌啶基损失 2.6%)。使用 FPTP-15 制造的 H2-O2 燃料电池原型达到了 0.89 W cm-2 的高峰值功率密度。此外,在 0.2 A cm-2 的条件下,电池在 50 °C 下的短期运行时间超过 100 小时,显示出良好的耐久性,电压轻微增加 160 μV h-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Stringing covalent organic framework particles for preparing highly loaded mixed-matrix membranes for efficient and precise dye separation High rejection seawater reverse osmosis TFC membranes with a polyamide-polysulfonamide interpenetrated functional layer Lattice-defective metal-organic framework membranes from filling mesoporous colloidal networks for monovalent ion separation Methanol tolerable ultrathin proton exchange membrane fabricated via in-situ ionic self-crosslinking strategy for high-performance DMFCs Non-metallic cation and anion co-doped perovskite oxide ceramic membranes for high-efficiency oxygen permeation at low temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1