Martina Murr , Daniel Wegener , Simon Böke , Cihan Gani , David Mönnich , Maximilian Niyazi , Moritz Schneider , Daniel Zips , Arndt-Christian Müller , Daniela Thorwarth
{"title":"Comparison of online adaptive and non-adaptive magnetic resonance image-guided radiation therapy in prostate cancer using dose accumulation","authors":"Martina Murr , Daniel Wegener , Simon Böke , Cihan Gani , David Mönnich , Maximilian Niyazi , Moritz Schneider , Daniel Zips , Arndt-Christian Müller , Daniela Thorwarth","doi":"10.1016/j.phro.2024.100662","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Conventional image-guided radiotherapy (conv-IGRT) is standard in prostate cancer (PC) but does not account for inter-fraction anatomical changes. Online-adaptive magnetic resonance-guided RT (OA-MRgRT) may improve organ-at-risk (OARs) sparing and clinical target volume (CTV) coverage. The aim of this study was to analyze accumulated OAR and target doses in PC after OA-MRgRT and conv-IGRT in comparison to pre-treatment reference planning (refPlan).</div></div><div><h3>Material and methods</h3><div>Ten patients with PC, previously treated with OA-MRgRT at the 1.5 T MR-Linac (20x3Gy), were included. Accumulated OA-MRgRT doses were determined by deformably registering all fraction’s MR-images. Conv-IGRT was simulated through rigid registration of the planning computed tomography with each fraction’s MR-image for dose mapping/accumulation. Dose-volume parameters (DVPs), including CTV D50% and D98%, rectum, bladder, urethra, Dmax and V56Gy for OA-MRgRT, conv-IGRT and refPlan were compared using the Wilcoxon signed-rank test. Clinical relevance of accumulated dose differences was analyzed using a normal-tissue complication-probability model.</div></div><div><h3>Results</h3><div>CTV-DVPs were comparable, whereas OA-MRgRT yielded decreased median OAR-DVPs compared to conv-IGRT, except for bladder V56Gy. OA-MRgRT demonstrated significantly lower median rectum Dmax over conv-IGRT (59.1/59.9 Gy, p = 0.006) and refPlan (60.1 Gy, p = 0.012). Similarly, OA-MRgRT yielded reduced median bladder Dmax compared to conv-IGRT (60.0/60.4 Gy, p = 0.006), and refPlan (61.2 Gy, p = 0.002). Overall, accumulated dose differences were small and did not translate into clinically relevant effects.</div></div><div><h3>Conclusion</h3><div>Deformably accumulated OA-MRgRT using 20x3Gy in PC showed significant but small dosimetric differences comparted to conv-IGRT. Feasibility of a dose accumulation methodology was demonstrated, which may be relevant for evaluating future hypo-fractionated OA-MRgRT approaches.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"32 ","pages":"Article 100662"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624001325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose
Conventional image-guided radiotherapy (conv-IGRT) is standard in prostate cancer (PC) but does not account for inter-fraction anatomical changes. Online-adaptive magnetic resonance-guided RT (OA-MRgRT) may improve organ-at-risk (OARs) sparing and clinical target volume (CTV) coverage. The aim of this study was to analyze accumulated OAR and target doses in PC after OA-MRgRT and conv-IGRT in comparison to pre-treatment reference planning (refPlan).
Material and methods
Ten patients with PC, previously treated with OA-MRgRT at the 1.5 T MR-Linac (20x3Gy), were included. Accumulated OA-MRgRT doses were determined by deformably registering all fraction’s MR-images. Conv-IGRT was simulated through rigid registration of the planning computed tomography with each fraction’s MR-image for dose mapping/accumulation. Dose-volume parameters (DVPs), including CTV D50% and D98%, rectum, bladder, urethra, Dmax and V56Gy for OA-MRgRT, conv-IGRT and refPlan were compared using the Wilcoxon signed-rank test. Clinical relevance of accumulated dose differences was analyzed using a normal-tissue complication-probability model.
Results
CTV-DVPs were comparable, whereas OA-MRgRT yielded decreased median OAR-DVPs compared to conv-IGRT, except for bladder V56Gy. OA-MRgRT demonstrated significantly lower median rectum Dmax over conv-IGRT (59.1/59.9 Gy, p = 0.006) and refPlan (60.1 Gy, p = 0.012). Similarly, OA-MRgRT yielded reduced median bladder Dmax compared to conv-IGRT (60.0/60.4 Gy, p = 0.006), and refPlan (61.2 Gy, p = 0.002). Overall, accumulated dose differences were small and did not translate into clinically relevant effects.
Conclusion
Deformably accumulated OA-MRgRT using 20x3Gy in PC showed significant but small dosimetric differences comparted to conv-IGRT. Feasibility of a dose accumulation methodology was demonstrated, which may be relevant for evaluating future hypo-fractionated OA-MRgRT approaches.