Cancan Ding , Chengyuan Deng , Qinyi Guo , Zhipeng Liu , Ru Ge , Bin Hu , Shilei Li , Haiwen Luo
{"title":"Superhigh strength and ductile press-hardening steel produced by shortened austenitization of microstructure containing Mn/Cr-rich cementite particles","authors":"Cancan Ding , Chengyuan Deng , Qinyi Guo , Zhipeng Liu , Ru Ge , Bin Hu , Shilei Li , Haiwen Luo","doi":"10.1016/j.scriptamat.2024.116435","DOIUrl":null,"url":null,"abstract":"<div><div>We developed a novel Si/Cr-alloyed martensitic press-hardening steel (PHS), which has ultimate tensile strength (UTS) of 2280 MPa and total elongation (TE) of 10.9 % after a short hot-forming process, far superior to the present 22MnB5 PHS. Such an unprecedented mechanical combination is primarily attributed to the sufficient retained austenite (RA) grains with evenly distributed mechanical stabilities, which is realized by dissolving nearly 50 % volume percentage of Mn/Cr-rich cementite particles during the short soaking with the guidance of the numerical simulations. As a result, some RA grains have the C/Mn/Cr-enriched cores and other have the cementite cores that are neighbored with high C/Mn/Cr concentrations and steep gradients. This leads to the great heterogeneity in the mechanical stabilities of RA grains in a wide range so that these RA grains are able to provide a continuous TRIP effect for sustainably enhanced work hardening during deformation.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"256 ","pages":"Article 116435"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004706","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a novel Si/Cr-alloyed martensitic press-hardening steel (PHS), which has ultimate tensile strength (UTS) of 2280 MPa and total elongation (TE) of 10.9 % after a short hot-forming process, far superior to the present 22MnB5 PHS. Such an unprecedented mechanical combination is primarily attributed to the sufficient retained austenite (RA) grains with evenly distributed mechanical stabilities, which is realized by dissolving nearly 50 % volume percentage of Mn/Cr-rich cementite particles during the short soaking with the guidance of the numerical simulations. As a result, some RA grains have the C/Mn/Cr-enriched cores and other have the cementite cores that are neighbored with high C/Mn/Cr concentrations and steep gradients. This leads to the great heterogeneity in the mechanical stabilities of RA grains in a wide range so that these RA grains are able to provide a continuous TRIP effect for sustainably enhanced work hardening during deformation.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.