Deformation-induced ω phase transition in polycrystalline tungsten under extreme shock loading

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-10-30 DOI:10.1016/j.scriptamat.2024.116432
Lei Zhang , Juan Ding , Jiatao Zhou , Baishan Chen , Yunzhu Ma , Yufeng Huang , Chaoping Liang , Wensheng Liu
{"title":"Deformation-induced ω phase transition in polycrystalline tungsten under extreme shock loading","authors":"Lei Zhang ,&nbsp;Juan Ding ,&nbsp;Jiatao Zhou ,&nbsp;Baishan Chen ,&nbsp;Yunzhu Ma ,&nbsp;Yufeng Huang ,&nbsp;Chaoping Liang ,&nbsp;Wensheng Liu","doi":"10.1016/j.scriptamat.2024.116432","DOIUrl":null,"url":null,"abstract":"<div><div>Tungsten(W) with the strongest metallic bonding and the highest melting point among metals, presents no phase transition before the melting temperature. Here we report the pristine body-centered cubic (BCC) α to metastable ω phase transformation in polycrystalline W under high-energy laser shock. The formation of ω phase is triggered by the collapse of atoms on two adjacent (111)α plane toward each other along &lt;111&gt;α direction. HADDF-STEM clearly shows the transition state hexagonal and the ideal ω phase form sequentially along the BCC/ω phase interface through different atomic displacement. First-principles calculations reveal that the energy required for BCC to ω transformation could be met at isostatic pressure lower than 200 GPa, which falls with the local stress concentration range of shock loading. Our findings not only unravel the new BCC/ω phase transition in W, but also shed lights to the plastic deformation mechanisms of strongly bonded materials under extreme shock loading.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"256 ","pages":"Article 116432"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004676","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tungsten(W) with the strongest metallic bonding and the highest melting point among metals, presents no phase transition before the melting temperature. Here we report the pristine body-centered cubic (BCC) α to metastable ω phase transformation in polycrystalline W under high-energy laser shock. The formation of ω phase is triggered by the collapse of atoms on two adjacent (111)α plane toward each other along <111>α direction. HADDF-STEM clearly shows the transition state hexagonal and the ideal ω phase form sequentially along the BCC/ω phase interface through different atomic displacement. First-principles calculations reveal that the energy required for BCC to ω transformation could be met at isostatic pressure lower than 200 GPa, which falls with the local stress concentration range of shock loading. Our findings not only unravel the new BCC/ω phase transition in W, but also shed lights to the plastic deformation mechanisms of strongly bonded materials under extreme shock loading.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极端冲击载荷下多晶钨中形变诱导的 ω 相变
钨(W)是金属中金属键最强、熔点最高的金属,在熔化温度之前没有相变。在此,我们报告了多晶钨在高能激光冲击下从原始体心立方(BCC)α相到可转移ω相的转变。ω相的形成是由相邻两个 (111)α 平面上的原子沿 <111>α 方向相互塌缩引发的。HADDF-STEM 清晰地显示了过渡态六方相和理想ω相通过不同的原子位移沿 BCC/ω 相界面依次形成。第一性原理计算显示,BCC 向 ω 转变所需的能量可在等静压低于 200 GPa 时达到,而等静压与冲击加载的局部应力集中范围一致。我们的发现不仅揭示了W中新的BCC/ω相变,还揭示了强结合材料在极端冲击载荷下的塑性变形机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Effect of B4C addition on the microstructure and mechanical properties of 304L austenitic stainless steel fabricated using laser powder bed fusion Modelling the evolution of microstructural bands in a martensite/austenite Q&P-processed stainless steel Editorial Board Strain glass state in Ni50.3Ti29.7Hf20 high-temperature shape memory alloy An in-situ Raman spectroscopy investigation of the oxidation of proton irradiated and cold-worked 304L stainless steel in oxygenated water at 300°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1