Evaluation of Taraxacum officinale phytoconstituents as potential JNK1 inhibitors: Perspectives from ADMET, molecular docking, molecular dynamics, and density functional theory

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-10-22 DOI:10.1016/j.chphi.2024.100757
Sphelele C. Sosibo , Hendrik G. Kruger , Wonder P. Nxumalo , Zimbili Zondi
{"title":"Evaluation of Taraxacum officinale phytoconstituents as potential JNK1 inhibitors: Perspectives from ADMET, molecular docking, molecular dynamics, and density functional theory","authors":"Sphelele C. Sosibo ,&nbsp;Hendrik G. Kruger ,&nbsp;Wonder P. Nxumalo ,&nbsp;Zimbili Zondi","doi":"10.1016/j.chphi.2024.100757","DOIUrl":null,"url":null,"abstract":"<div><div>The impact of activated c-Jun N-terminal kinase isoform JNK1 chemical pathways in insulin biosynthesis poses a potential health risk of glucose intolerance. Blocking the activity of JNK1 is a promising route for the design of anti-diabetic drugs and associated metabolic syndromes. In this study, 17 extracts of <em>Taraxacum officinale</em> were chosen to bind JNK1 and ascertain their modulatory activity. We employed molecular dynamics, density functional theory and three docking approaches: standard precision, extra precision and quantum polarized ligand docking. The best binding free energy results were obtained from the quantum polarized ligand docking, with myricetin (1) showing a docking score of -10.464 kcal/mol, while quercetin (2) and daphnetin (3) displayed values of -9.769 and -7.136 kcal/mol respectively. Following this, 100 ns molecular dynamics simulations with Desmond showed stabilization average root mean square deviations of 2.34, 2.87, and 2.88 Å for myricetin, quercetin and daphnetin. Further, molecular dynamics revealed complexes of myricetin (ΔG = -38.81 kcal/mol) and quercetin (ΔG = -34.99 kcal/mol) as the most stable inside the JNK1 interface. The energy gaps for myricetin, quercetin and daphnetin were estimated to be 6.17, 6.00 and 6.53 eV employing the M06–2X functional in PCM solvation. Further, myricetin showed the strongest intramolecular hydrogen bonding with -13.06 kcal/mol. This study provides insights into possible anti-type-2 diabetes properties of <em>Taraxacum officinale</em> targeting JNK1.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424003013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of activated c-Jun N-terminal kinase isoform JNK1 chemical pathways in insulin biosynthesis poses a potential health risk of glucose intolerance. Blocking the activity of JNK1 is a promising route for the design of anti-diabetic drugs and associated metabolic syndromes. In this study, 17 extracts of Taraxacum officinale were chosen to bind JNK1 and ascertain their modulatory activity. We employed molecular dynamics, density functional theory and three docking approaches: standard precision, extra precision and quantum polarized ligand docking. The best binding free energy results were obtained from the quantum polarized ligand docking, with myricetin (1) showing a docking score of -10.464 kcal/mol, while quercetin (2) and daphnetin (3) displayed values of -9.769 and -7.136 kcal/mol respectively. Following this, 100 ns molecular dynamics simulations with Desmond showed stabilization average root mean square deviations of 2.34, 2.87, and 2.88 Å for myricetin, quercetin and daphnetin. Further, molecular dynamics revealed complexes of myricetin (ΔG = -38.81 kcal/mol) and quercetin (ΔG = -34.99 kcal/mol) as the most stable inside the JNK1 interface. The energy gaps for myricetin, quercetin and daphnetin were estimated to be 6.17, 6.00 and 6.53 eV employing the M06–2X functional in PCM solvation. Further, myricetin showed the strongest intramolecular hydrogen bonding with -13.06 kcal/mol. This study provides insights into possible anti-type-2 diabetes properties of Taraxacum officinale targeting JNK1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估作为潜在 JNK1 抑制剂的蒲公英植物成分:ADMET、分子对接、分子动力学和密度泛函理论的观点
活化的 c-Jun N-terminal 激酶异构体 JNK1 化学途径对胰岛素生物合成的影响构成了葡萄糖不耐受的潜在健康风险。阻断 JNK1 的活性是设计抗糖尿病药物和相关代谢综合征的一条可行途径。本研究选择了 17 种蒲公英提取物与 JNK1 结合并确定其调节活性。我们采用了分子动力学、密度泛函理论和三种对接方法:标准精度对接、额外精度对接和量子极化配体对接。量子极化配体对接获得了最佳的结合自由能结果,其中杨梅素(1)的对接得分为-10.464 kcal/mol,而槲皮素(2)和水黄皮素(3)的对接得分分别为-9.769和-7.136 kcal/mol。随后,使用 Desmond 进行的 100 ns 分子动力学模拟显示,杨梅素、槲皮素和萘素的稳定化平均均方根偏差分别为 2.34、2.87 和 2.88 Å。此外,分子动力学显示,在 JNK1 界面内,三叶草素(ΔG = -38.81 kcal/mol)和槲皮素(ΔG = -34.99 kcal/mol)的复合物最为稳定。利用 PCM 溶胶中的 M06-2X 函数,估计出杨梅素、槲皮素和萘皮素的能隙分别为 6.17、6.00 和 6.53 eV。此外,杨梅素的分子内氢键最强,为 -13.06 kcal/mol。这项研究有助于深入了解蒲公英以 JNK1 为靶点可能具有的抗 2 型糖尿病特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective 50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1