Dushyant Singh , Tharundev V V , Subha Maity , Dhammapriy Gayakwad , H. Jörg Osten , Saurabh Lodha , Krista R Khiangte
{"title":"Growth of single crystalline GeSn alloy epilayer on Gd2O3/Si (111) engineered insulating substrate using RF sputtering and solid phase epitaxy","authors":"Dushyant Singh , Tharundev V V , Subha Maity , Dhammapriy Gayakwad , H. Jörg Osten , Saurabh Lodha , Krista R Khiangte","doi":"10.1016/j.jcrysgro.2024.127972","DOIUrl":null,"url":null,"abstract":"<div><div>The article showcases a low-cost, low-temperature deposition and<!--> <!-->HVM<!--> <!-->technique to develop single crystalline GeSn alloy epilayers on Gd<sub>2</sub>O<sub>3</sub>/Si (111) substrate. First, GeSn alloy amorphous layer is deposited on the insulating substrates using an Radio Frequency (RF) sputtering apparatus. Subsequently, an inductively coupled plasma-assisted chemical vapor deposition (ICP-CVD) process is used to deposit a SiO<sub>2</sub> capping layer to protect against Sn out-diffusion during heat treatment. The samples are then subjected to solid phase epitaxy (SPE) at 450 °C, 550 °C, and 650 °C. Sample processed for SPE at 450 °C has weak crystallinity and only shows Type-A stacking. Those processed for SPE at 550 °C and 650 °C, on the other hand, have revealed formation of the single-crystalline GeSn alloy epilayer with Type-A and Type-B stacking. However, SPE at 650 °C revealed tin out-diffusion and segregation effects. This work is significant for enabling the preparation of high-Sn-content GeSn alloy epilayers on insulating Gd<sub>2</sub>O<sub>3</sub>/Si (111) substrates, as it requires the initial deposition of a GeSn amorphous alloy epilayer using RF sputtering. This advancement promises benefits which includes advantages such as lower operating voltage, reduced leakage current, and minimized parasitic and short-channel effects, making it ideal for advancing RF technology.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"649 ","pages":"Article 127972"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002202482400410X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The article showcases a low-cost, low-temperature deposition and HVM technique to develop single crystalline GeSn alloy epilayers on Gd2O3/Si (111) substrate. First, GeSn alloy amorphous layer is deposited on the insulating substrates using an Radio Frequency (RF) sputtering apparatus. Subsequently, an inductively coupled plasma-assisted chemical vapor deposition (ICP-CVD) process is used to deposit a SiO2 capping layer to protect against Sn out-diffusion during heat treatment. The samples are then subjected to solid phase epitaxy (SPE) at 450 °C, 550 °C, and 650 °C. Sample processed for SPE at 450 °C has weak crystallinity and only shows Type-A stacking. Those processed for SPE at 550 °C and 650 °C, on the other hand, have revealed formation of the single-crystalline GeSn alloy epilayer with Type-A and Type-B stacking. However, SPE at 650 °C revealed tin out-diffusion and segregation effects. This work is significant for enabling the preparation of high-Sn-content GeSn alloy epilayers on insulating Gd2O3/Si (111) substrates, as it requires the initial deposition of a GeSn amorphous alloy epilayer using RF sputtering. This advancement promises benefits which includes advantages such as lower operating voltage, reduced leakage current, and minimized parasitic and short-channel effects, making it ideal for advancing RF technology.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.