3D micromechanical interaction of thin-film retained austenite and lath martensite by computational plasticity

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-10-30 DOI:10.1016/j.scriptamat.2024.116434
Tim Fischer , Mina Amiri , Joshua Kumpati , Peter Hedström , Annika Borgenstam
{"title":"3D micromechanical interaction of thin-film retained austenite and lath martensite by computational plasticity","authors":"Tim Fischer ,&nbsp;Mina Amiri ,&nbsp;Joshua Kumpati ,&nbsp;Peter Hedström ,&nbsp;Annika Borgenstam","doi":"10.1016/j.scriptamat.2024.116434","DOIUrl":null,"url":null,"abstract":"<div><div>To exploit the full potential of advanced high-strength steels (AHSS), a more in-depth understanding of the complex micromechanical interaction of thin-film retained austenite (RA) and lath martensite is indispensable. Inspired by the medium-Mn steel microstructure, a three-dimensional micromechanical modeling approach is therefore proposed in the present work, embedding the thin RA films explicitly into the hierarchical lath martensite structure. This enables systematic studies of the effect of RA film thickness and volume fraction on the local stresses and strains as well as their partitioning within the microstructure. The investigations reveal that with shrinking RA volume fraction, both stress and especially strain heterogeneity in the thin-film RA intensifies. In the martensite blocks, stress and strain heterogeneity also intensifies, although stresses are generally more heterogeneously, and strains much more homogeneously, distributed than in RA. The results underline the key role of RA with thin-film morphology for further optimizing AHSS microstructures.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"256 ","pages":"Article 116434"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964622400469X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To exploit the full potential of advanced high-strength steels (AHSS), a more in-depth understanding of the complex micromechanical interaction of thin-film retained austenite (RA) and lath martensite is indispensable. Inspired by the medium-Mn steel microstructure, a three-dimensional micromechanical modeling approach is therefore proposed in the present work, embedding the thin RA films explicitly into the hierarchical lath martensite structure. This enables systematic studies of the effect of RA film thickness and volume fraction on the local stresses and strains as well as their partitioning within the microstructure. The investigations reveal that with shrinking RA volume fraction, both stress and especially strain heterogeneity in the thin-film RA intensifies. In the martensite blocks, stress and strain heterogeneity also intensifies, although stresses are generally more heterogeneously, and strains much more homogeneously, distributed than in RA. The results underline the key role of RA with thin-film morphology for further optimizing AHSS microstructures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过计算塑性实现薄膜保留奥氏体和板条马氏体的三维微机械相互作用
要充分挖掘先进高强度钢(AHSS)的潜力,就必须更深入地了解薄膜残余奥氏体(RA)和板条马氏体之间复杂的微观机械相互作用。因此,受中锰钢微观结构的启发,本研究提出了一种三维微观力学建模方法,将保留奥氏体薄膜明确嵌入分层马氏体结构中。这样就能系统地研究 RA 薄膜厚度和体积分数对局部应力和应变的影响,以及它们在微观结构中的分布情况。研究表明,随着 RA 体积分数的缩小,薄膜 RA 中的应力,尤其是应变异质性会增强。在马氏体块中,应力和应变的异质性也会增强,不过与 RA 相比,应力的异质性通常更大,而应变的均匀性则更高。这些结果凸显了具有薄膜形态的 RA 对于进一步优化 AHSS 微结构的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Insights in improving creep resistance of low-cost 2nd-generation nickel based single crystal superalloys at intermediate temperature Influence of non-rare earth elements on basal stacking fault energy of Mg binary alloys in solid solution Chemical composition dependent atom clustering during natural aging in Al-Mg-Si alloys Machine learning-assisted creep life prediction and empirical formula generation for 9-12% Cr steel New insights into multiple thickening mechanisms of T1 precipitates in Al-Cu-Li alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1