{"title":"Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network","authors":"Chukwuemeka Emmanuel Okafor, Komla Agbenyo Folly","doi":"10.1016/j.cles.2024.100153","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a design and implementation of a control system for the multifunctional applications of a Battery Energy Storage System in an electric network. Simulation results revealed that through the suggested control approach, a frequency support of 50.24 Hz for the 53-bus system during a load decrease contingency of 350MW was achieved. Without the control system, the frequency was 50 .38Hz. Such a high frequency if not addressed, may result in a loss of synchronization among interconnected synchronous machines which could result in a decrease in voltage stability of the studied network. Besides, a reduction of about 2.05 MW in the active power losses was accomplished and a reactive power support of 3.63Mvar was realised. Thus, through the proposed strategy, Battery energy storage system has been enabled for frequency regulation, power loss minimization and voltage deviation mitigation resulting in an overall enhancement of the power quality of the electric power delivered in the studied networks.</div></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a design and implementation of a control system for the multifunctional applications of a Battery Energy Storage System in an electric network. Simulation results revealed that through the suggested control approach, a frequency support of 50.24 Hz for the 53-bus system during a load decrease contingency of 350MW was achieved. Without the control system, the frequency was 50 .38Hz. Such a high frequency if not addressed, may result in a loss of synchronization among interconnected synchronous machines which could result in a decrease in voltage stability of the studied network. Besides, a reduction of about 2.05 MW in the active power losses was accomplished and a reactive power support of 3.63Mvar was realised. Thus, through the proposed strategy, Battery energy storage system has been enabled for frequency regulation, power loss minimization and voltage deviation mitigation resulting in an overall enhancement of the power quality of the electric power delivered in the studied networks.