The potential of integrating solar-powered membrane distillation with a humidification–dehumidification system to recover potable water from textile wastewater

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2024-11-01 DOI:10.1016/j.cep.2024.110036
{"title":"The potential of integrating solar-powered membrane distillation with a humidification–dehumidification system to recover potable water from textile wastewater","authors":"","doi":"10.1016/j.cep.2024.110036","DOIUrl":null,"url":null,"abstract":"<div><div>Textile production is energy- and water-intensive, and membrane distillation (MD) has shown potential for reclaiming potable water from textile wastewater. However, in the current state, the energy and water recovery potential of MD is lower compared to other conventional distillation technologies. To address these issues, this study proposes and assesses a novel solar-powered hybrid Sweeping Gas MD (SGMD) unit integrated with a humidification dehumidification (HDH) system. Real textile wastewater from bleaching and dyeing processes is treated in the hybrid SGMD-HDH system to recover freshwater. An optical-thermal sub-model for the parabolic trough collector and the heat and mass transfer model for the dehumidifier are developed and validated using experimental measurements. The results reveal that the hybrid SGMD-HDH can exhibit nearly 20 % higher water flux and 50 % higher gain output ratio (GOR) compared to the standalone MD system. The highest water production and average GOR for bleaching wastewater feed solution reached 11.72 kg/day and 0.64, respectively. The higher concentration of chemical contaminants in dyeing wastewater decreased water flux and GOR by up to 14 % and 10 %, respectively, compared to bleaching wastewater. Elemental analysis showed increased carbon concentrations on the polytetrafluoroethylene membrane surface arising from organic fouling.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025527012400374X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Textile production is energy- and water-intensive, and membrane distillation (MD) has shown potential for reclaiming potable water from textile wastewater. However, in the current state, the energy and water recovery potential of MD is lower compared to other conventional distillation technologies. To address these issues, this study proposes and assesses a novel solar-powered hybrid Sweeping Gas MD (SGMD) unit integrated with a humidification dehumidification (HDH) system. Real textile wastewater from bleaching and dyeing processes is treated in the hybrid SGMD-HDH system to recover freshwater. An optical-thermal sub-model for the parabolic trough collector and the heat and mass transfer model for the dehumidifier are developed and validated using experimental measurements. The results reveal that the hybrid SGMD-HDH can exhibit nearly 20 % higher water flux and 50 % higher gain output ratio (GOR) compared to the standalone MD system. The highest water production and average GOR for bleaching wastewater feed solution reached 11.72 kg/day and 0.64, respectively. The higher concentration of chemical contaminants in dyeing wastewater decreased water flux and GOR by up to 14 % and 10 %, respectively, compared to bleaching wastewater. Elemental analysis showed increased carbon concentrations on the polytetrafluoroethylene membrane surface arising from organic fouling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将太阳能膜蒸馏与加湿-除湿系统结合起来从纺织废水中回收饮用水的潜力
纺织生产是能源和水密集型行业,膜蒸馏(MD)已显示出从纺织废水中回收饮用水的潜力。然而,与其他传统蒸馏技术相比,膜蒸馏的能源和水回收潜力较低。为解决这些问题,本研究提出并评估了一种新型太阳能混合扫气 MD(SGMD)装置,该装置与加湿除湿(HDH)系统集成。在 SGMD-HDH 混合系统中处理来自漂染工艺的真实纺织废水,以回收淡水。开发了抛物面槽式集热器的光热子模型和除湿器的传热传质模型,并通过实验测量进行了验证。结果表明,与独立的抛物面槽集热器系统相比,SGMD-HDH 混合系统的水通量高出近 20%,增益输出比(GOR)高出 50%。漂白废水进料溶液的最高产水量和平均 GOR 分别达到 11.72 公斤/天和 0.64。与漂白废水相比,染色废水中较高浓度的化学污染物使水通量和 GOR 分别降低了 14% 和 10%。元素分析表明,有机污垢导致聚四氟乙烯膜表面的碳浓度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
The potential of integrating solar-powered membrane distillation with a humidification–dehumidification system to recover potable water from textile wastewater Optimization of antimicrobial properties of essential oils under rotating magnetic field Parametric design of curved hydrocyclone using data points and its separation enhancement mechanism Supercritical carbon dioxide as solvent for manufacturing of ibuprofen loaded gelatine sponges with enhanced performance Investigation of gas-liquid mass transfer in slurry systems driven by the coaxial mixer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1