{"title":"Transforming municipal solid waste management through material and substance flow analysis: Conversion pathways for sustainable energy production","authors":"Rahul S. Raj , Siddharth Jain , Amit Kumar Sharma","doi":"10.1016/j.enconman.2024.119164","DOIUrl":null,"url":null,"abstract":"<div><div>Municipal solid waste (MSW) management poses a significant challenge due to escalating waste generation and their environmental impacts. This study presents a comprehensive analysis of MSW management in India, specifically New Delhi through material and substance flow analysis, focusing on conversion pathways for sustainable energy production. We investigated conventional methods, including composting, recycling, and incineration, alongside advanced single stage and two-stage thermochemical technologies. This research evaluates a series of scenarios, including a baseline case and alternative pathways that exclude incineration, and compare the effectiveness of different MSW management routes in terms of resource recovery and burden on landfill. Six different scenarios were analyzed; the most effective waste-to-energy route is Scenario 6, enhanced integrated thermochemical conversion with recycling, which produced 6,427 tpd of product from 11,300 tpd MSW. Although Scenario 5, with a recycling facility that includes integrated thermochemical conversion, recovers 6,454 tpd of product, is less practicable in the long term. The two scenarios are remarkable compared to the baseline scenario, from which only 3,690 tpd of product is produced. These integrated processes thus reduce the pressure on landfills and are an entrance into a circular economy. The results potentially indicate resource recovery rates up to 57% from current rate of only 32%. The findings highlight the potential of integrated thermochemical processes in improving waste-to-energy efficiency and reducing greenhouse gas emissions. This research contributes to the development of more effective waste management solutions and provides actionable insights, supporting the transition towards a circular economy.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119164"},"PeriodicalIF":9.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424011051","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Municipal solid waste (MSW) management poses a significant challenge due to escalating waste generation and their environmental impacts. This study presents a comprehensive analysis of MSW management in India, specifically New Delhi through material and substance flow analysis, focusing on conversion pathways for sustainable energy production. We investigated conventional methods, including composting, recycling, and incineration, alongside advanced single stage and two-stage thermochemical technologies. This research evaluates a series of scenarios, including a baseline case and alternative pathways that exclude incineration, and compare the effectiveness of different MSW management routes in terms of resource recovery and burden on landfill. Six different scenarios were analyzed; the most effective waste-to-energy route is Scenario 6, enhanced integrated thermochemical conversion with recycling, which produced 6,427 tpd of product from 11,300 tpd MSW. Although Scenario 5, with a recycling facility that includes integrated thermochemical conversion, recovers 6,454 tpd of product, is less practicable in the long term. The two scenarios are remarkable compared to the baseline scenario, from which only 3,690 tpd of product is produced. These integrated processes thus reduce the pressure on landfills and are an entrance into a circular economy. The results potentially indicate resource recovery rates up to 57% from current rate of only 32%. The findings highlight the potential of integrated thermochemical processes in improving waste-to-energy efficiency and reducing greenhouse gas emissions. This research contributes to the development of more effective waste management solutions and provides actionable insights, supporting the transition towards a circular economy.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.