Karl Kästner , Roeland C. van de Vijsel , Daniel Caviedes-Voullième , Christoph Hinz
{"title":"A scale-invariant method for quantifying the regularity of environmental spatial patterns","authors":"Karl Kästner , Roeland C. van de Vijsel , Daniel Caviedes-Voullième , Christoph Hinz","doi":"10.1016/j.ecocom.2024.101104","DOIUrl":null,"url":null,"abstract":"<div><div>Spatial patterns of alternating high and low biomass occur in a wide range of ecosystems. Patterns can improve ecosystem productivity and resilience, but the particular effects of patterning depend on their spatial structure. The spatial structure is conventionally classified as either regular, when the patches of biomass are of similar size and are spaced in similar intervals, or irregular. The formation of regular patterns is driven by scale-dependent feedbacks. Models incorporating those feedbacks generate highly regular patterns, while natural patterns appear less regular. This calls for a more nuanced quantification beyond a binary classification. Here, we propose measuring the degree of regularity by the maximum of a pattern’s spectral density, based on the observation that the density of highly regular patterns consists of a narrow and high peak, while the density of highly irregular patterns consists of a low and wide lobe. We rescale the density to make the measure invariant with respect to the characteristic length-scale of a pattern, facilitating the comparison of patterns observed or modelled under different conditions. We demonstrate our method in a metastudy determining the regularity of natural and model-generated patterns depicted in previous studies. We find that natural patterns have an intermediate degree of regularity, resembling random surfaces generated by stochastic processes. We find that conventional deterministic models do not reproduce the intermediate regularity of natural patterns, as they generate patterns which are much more regular and similar to periodic surfaces. We call for appreciating the stochasticity of natural patterns in systems with scale-dependent feedbacks.</div></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"60 ","pages":"Article 101104"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X24000321","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial patterns of alternating high and low biomass occur in a wide range of ecosystems. Patterns can improve ecosystem productivity and resilience, but the particular effects of patterning depend on their spatial structure. The spatial structure is conventionally classified as either regular, when the patches of biomass are of similar size and are spaced in similar intervals, or irregular. The formation of regular patterns is driven by scale-dependent feedbacks. Models incorporating those feedbacks generate highly regular patterns, while natural patterns appear less regular. This calls for a more nuanced quantification beyond a binary classification. Here, we propose measuring the degree of regularity by the maximum of a pattern’s spectral density, based on the observation that the density of highly regular patterns consists of a narrow and high peak, while the density of highly irregular patterns consists of a low and wide lobe. We rescale the density to make the measure invariant with respect to the characteristic length-scale of a pattern, facilitating the comparison of patterns observed or modelled under different conditions. We demonstrate our method in a metastudy determining the regularity of natural and model-generated patterns depicted in previous studies. We find that natural patterns have an intermediate degree of regularity, resembling random surfaces generated by stochastic processes. We find that conventional deterministic models do not reproduce the intermediate regularity of natural patterns, as they generate patterns which are much more regular and similar to periodic surfaces. We call for appreciating the stochasticity of natural patterns in systems with scale-dependent feedbacks.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity