Nabaa Bouzidia , Besma Hamdi , Francesco Capitelli
{"title":"A novel phosphate-based metal-organic framework: Synthesis and comprehensive structural characterization","authors":"Nabaa Bouzidia , Besma Hamdi , Francesco Capitelli","doi":"10.1016/j.materresbull.2024.113165","DOIUrl":null,"url":null,"abstract":"<div><div>A novel organic-inorganic metallo-phosphate complex, CoF<sub>2</sub>(H<sub>2</sub>O)Fe(C<sub>10</sub>H<sub>8</sub>N<sub>2</sub>)(HPO<sub>4</sub>)<sub>2</sub>, obtained through hydrothermal method, was characterized via single-crystal X-ray diffraction, infrared and Raman spectroscopies, and thermogravimetric analysis. UV and photoluminescence spectroscopy were used to determine the optical properties. Structural study revealed a metal-organic framework (MOF), with iron and cobalt octahedra and phosphate tetrahedra, and a (2,2′‒bipyridine) coordinated by Fe octahedron. These moieties form chains, connected via π−π and H bonds. In order to assess the structural stability and interactions between atoms, a crystal contact study was carried out through Hirshfeld surface analysis and 2D fingerprint diagrams, to investigate the tendency of intermolecular interactions to form crystal packing by using enrichment ratio. To better examine the structure, theoretical studies were carried out using density functional theory, followed by a detailed examination of atoms in molecules using the bond critical point approach. The material revealed clear fluorescence after excitation at 285 nm, with intense emission in the violet.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113165"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004951","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel organic-inorganic metallo-phosphate complex, CoF2(H2O)Fe(C10H8N2)(HPO4)2, obtained through hydrothermal method, was characterized via single-crystal X-ray diffraction, infrared and Raman spectroscopies, and thermogravimetric analysis. UV and photoluminescence spectroscopy were used to determine the optical properties. Structural study revealed a metal-organic framework (MOF), with iron and cobalt octahedra and phosphate tetrahedra, and a (2,2′‒bipyridine) coordinated by Fe octahedron. These moieties form chains, connected via π−π and H bonds. In order to assess the structural stability and interactions between atoms, a crystal contact study was carried out through Hirshfeld surface analysis and 2D fingerprint diagrams, to investigate the tendency of intermolecular interactions to form crystal packing by using enrichment ratio. To better examine the structure, theoretical studies were carried out using density functional theory, followed by a detailed examination of atoms in molecules using the bond critical point approach. The material revealed clear fluorescence after excitation at 285 nm, with intense emission in the violet.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.