Calibration and intelligent optimization for DEM numerical parameters in heterogeneous rock mass

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers and Geotechnics Pub Date : 2024-10-30 DOI:10.1016/j.compgeo.2024.106863
Runpeng Shang , Yugui Yang , Bingxiang Huang , Yong Chen , Chao Qiu , Wang Liu
{"title":"Calibration and intelligent optimization for DEM numerical parameters in heterogeneous rock mass","authors":"Runpeng Shang ,&nbsp;Yugui Yang ,&nbsp;Bingxiang Huang ,&nbsp;Yong Chen ,&nbsp;Chao Qiu ,&nbsp;Wang Liu","doi":"10.1016/j.compgeo.2024.106863","DOIUrl":null,"url":null,"abstract":"<div><div>Calibrating meso parameters is a crucial step in modeling rock materials using the Distinct Element Method (DEM). Improved calibration methods integrating machine learning and optimization algorithms have been proposed to revise the time-consuming conventional trial-and-error approach. This study introduces an innovative calibration method for heterogeneous DEM numerical parameters, optimized with the improved DBO algorithm (IDBO) utilizing Latin Hypercube Sampling combined with Gaussian Processes (GP-LHS) for initialization and hybrid strategies for iteration. Findings suggest the proposed enhanced heterogeneous DEM calibration method can accurately reproduce laboratory results and similar material experiments. Additionally, this method performs better than the DBO-DEM, PSO-DEM, and GA-DEM calibration methods in heterogeneous DEM parameters calibration speed with the same accuracy requirement during unconfined compression tests. The findings affirm the potential of the method for heterogeneous DEM numerical parameters calibration.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106863"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24008024","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Calibrating meso parameters is a crucial step in modeling rock materials using the Distinct Element Method (DEM). Improved calibration methods integrating machine learning and optimization algorithms have been proposed to revise the time-consuming conventional trial-and-error approach. This study introduces an innovative calibration method for heterogeneous DEM numerical parameters, optimized with the improved DBO algorithm (IDBO) utilizing Latin Hypercube Sampling combined with Gaussian Processes (GP-LHS) for initialization and hybrid strategies for iteration. Findings suggest the proposed enhanced heterogeneous DEM calibration method can accurately reproduce laboratory results and similar material experiments. Additionally, this method performs better than the DBO-DEM, PSO-DEM, and GA-DEM calibration methods in heterogeneous DEM parameters calibration speed with the same accuracy requirement during unconfined compression tests. The findings affirm the potential of the method for heterogeneous DEM numerical parameters calibration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
校准和智能优化异质岩体中的 DEM 数值参数
校准中观参数是使用独立元素法(DEM)对岩石材料进行建模的关键步骤。有人提出了集成机器学习和优化算法的改进校准方法,以修正耗时的传统试错法。本研究介绍了一种创新的异质 DEM 数值参数校准方法,该方法采用改进的 DBO 算法(IDBO)进行优化,利用拉丁超立方采样结合高斯过程(GP-LHS)进行初始化,并采用混合策略进行迭代。研究结果表明,所提出的增强型异质 DEM 校准方法能够准确再现实验室结果和类似材料实验。此外,在无约束压缩试验中,在相同精度要求下,该方法的异质 DEM 参数校准速度优于 DBO-DEM、PSO-DEM 和 GA-DEM 校准方法。研究结果肯定了该方法在异质 DEM 数值参数校准方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
期刊最新文献
Stability of conical foundations on anisotropic clay: A comprehensive three-dimensional study on V-H-M failure envelopes Effect of the connection mode on the dynamic characteristics of the pile-wheel composite foundation for offshore wind turbines Particle shape distribution effects on the critical strength of granular materials DEM Validation for impact Wave propagation in dry sand: A comparison with experimental results Evaluation of the shear stiffness and load redistribution of framed structures affected by tunnelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1