Growth and electronic structure of the nodal line semimetal in monolayer Cu2Si on Cu(111)

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Surface Science Pub Date : 2024-10-22 DOI:10.1016/j.susc.2024.122632
Jinfeng Xu , Chen Liu , Yuxuan Guo , Guikai Zhang , Kun Liu , Haijie Qian , Kaiqi Nie , Zhenyu Wang , Jiaou Wang
{"title":"Growth and electronic structure of the nodal line semimetal in monolayer Cu2Si on Cu(111)","authors":"Jinfeng Xu ,&nbsp;Chen Liu ,&nbsp;Yuxuan Guo ,&nbsp;Guikai Zhang ,&nbsp;Kun Liu ,&nbsp;Haijie Qian ,&nbsp;Kaiqi Nie ,&nbsp;Zhenyu Wang ,&nbsp;Jiaou Wang","doi":"10.1016/j.susc.2024.122632","DOIUrl":null,"url":null,"abstract":"<div><div>Cu<sub>2</sub>Si, a single-layer two-dimensional material with a honeycomb structure, has been proposed to have Dirac nodal line fermions. In this study, the synchrotron radiation X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and angle-resolved photoemission spectroscopy (SR-XPS, SR-UPS, and SR-ARPES) techniques were used to investigate the dynamic process of in situ deposition of single-layer Cu<sub>2</sub>Si on a Cu(111) crystal surface via molecular beam epitaxy (MBE). Cu<sub>2</sub>Si existed as a monolayer (ML) alloy, and there were competing mechanisms of distinct chemical states of silicon in different growth periods, according to a detailed examination of the experimental SR-XPS and SR-UPS spectra. Additionally, a weak interaction between the Cu<sub>2</sub>Si ML and Cu(111) was demonstrated via SR-ARPES and first-principles computations. The unique electronic structure of the Cu<sub>2</sub>Si ML was not destroyed by either this weak interaction or the disordered silicon produced on the surface during the growth process. The study of the Cu<sub>2</sub>Si growth kinetics provides a guarantee and a basis for the future exploration of the exotic properties of Cu<sub>2</sub>Si.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122632"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001833","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cu2Si, a single-layer two-dimensional material with a honeycomb structure, has been proposed to have Dirac nodal line fermions. In this study, the synchrotron radiation X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and angle-resolved photoemission spectroscopy (SR-XPS, SR-UPS, and SR-ARPES) techniques were used to investigate the dynamic process of in situ deposition of single-layer Cu2Si on a Cu(111) crystal surface via molecular beam epitaxy (MBE). Cu2Si existed as a monolayer (ML) alloy, and there were competing mechanisms of distinct chemical states of silicon in different growth periods, according to a detailed examination of the experimental SR-XPS and SR-UPS spectra. Additionally, a weak interaction between the Cu2Si ML and Cu(111) was demonstrated via SR-ARPES and first-principles computations. The unique electronic structure of the Cu2Si ML was not destroyed by either this weak interaction or the disordered silicon produced on the surface during the growth process. The study of the Cu2Si growth kinetics provides a guarantee and a basis for the future exploration of the exotic properties of Cu2Si.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单层 Cu2Si 在 Cu(111) 上的生长和节点线半金属的电子结构
Cu2Si 是一种具有蜂巢结构的单层二维材料,被认为具有狄拉克结线费米子。本研究采用同步辐射 X 射线光电子能谱、紫外光电子能谱和角分辨光发射光谱(SR-XPS、SR-UPS 和 SR-ARPES)技术,研究了通过分子束外延(MBE)在铜(111)晶体表面原位沉积单层 Cu2Si 的动态过程。根据对 SR-XPS 和 SR-UPS 实验光谱的详细研究,Cu2Si 以单层 (ML) 合金的形式存在,并且在不同的生长时期存在硅的不同化学状态的竞争机制。此外,通过 SR-ARPES 和第一原理计算,证明了 Cu2Si ML 与 Cu(111) 之间存在微弱的相互作用。Cu2Si ML 的独特电子结构既没有被这种弱相互作用破坏,也没有被生长过程中表面产生的无序硅破坏。对 Cu2Si 生长动力学的研究为今后探索 Cu2Si 的奇异特性提供了保证和基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
期刊最新文献
VS2/graphene heterostructures as cathode materials for sodium-sulfur batteries: A first-principles study Effect of alloying elements (Ti, Zn, Zr, Al) on the interfacial properties of Cu/Ni2Si: A DFT study Editorial Board Adsorbate-induced effects on the H− ion collisions with Na/Ag(111) and K/Ag(111) surfaces One century of evolution of surface science, a personal perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1