Simultaneous hydrogen generation and wastewater purification: An innovative closed-loop reverse electrodialysis system incorporating air–gap diffusion distillation

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS Energy Conversion and Management Pub Date : 2024-10-30 DOI:10.1016/j.enconman.2024.119209
Qiang Leng , Feilong Li , Zhengfei Luo , Lin Wang , Kaixin Zheng , Zhanwei Wang , Xi Wu
{"title":"Simultaneous hydrogen generation and wastewater purification: An innovative closed-loop reverse electrodialysis system incorporating air–gap diffusion distillation","authors":"Qiang Leng ,&nbsp;Feilong Li ,&nbsp;Zhengfei Luo ,&nbsp;Lin Wang ,&nbsp;Kaixin Zheng ,&nbsp;Zhanwei Wang ,&nbsp;Xi Wu","doi":"10.1016/j.enconman.2024.119209","DOIUrl":null,"url":null,"abstract":"<div><div>Air-gap diffusion distillation (AGDD) is a thermal distillation technology that can convert low-grade heat sources into salinity gradient energy, offering broad application potential. Since the AGDD system operates under atmospheric pressure, it can be seamlessly integrated with reverse electrodialysis (RED) technology, facilitating the conversion of low-grade thermal energy into electricity, hydrogen, and chemical energy. This paper constructs, for the first time, an AGDD-RED mathematical model that simultaneously achieves hydrogen generation and wastewater purification. Accordingly, the influence behaviors of the concentration of AGDD feed solution (0.5 mol·L<sup>-1</sup>-5 mol·L<sup>-1</sup>) and low-grade heat source temperature (55–95 °C) on hydrogen generation performance and degradation efficiency are simulated and discussed. At a feed concentration of 3 M, hydrogen generation and COD degradation rates achieve their peak values of 0.19 kW and 46.4 %, respectively. At 55 °C, the degradation rate and hydrogen generation reach their highest values, at 47.1 % and 0.2 kW, with the total energy conversion efficiency reaching 1.65 %. Finally, the energy distribution of the entire system is analyzed, and the results show that the salinity gradient energy regeneration process in the AGDD subsystem is the key factor affecting the efficiency of the system. Reducing pump power consumption and non-ohmic resistance in the RED subsystem will effectively improve the energy conversion performance of the system.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119209"},"PeriodicalIF":9.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424011506","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Air-gap diffusion distillation (AGDD) is a thermal distillation technology that can convert low-grade heat sources into salinity gradient energy, offering broad application potential. Since the AGDD system operates under atmospheric pressure, it can be seamlessly integrated with reverse electrodialysis (RED) technology, facilitating the conversion of low-grade thermal energy into electricity, hydrogen, and chemical energy. This paper constructs, for the first time, an AGDD-RED mathematical model that simultaneously achieves hydrogen generation and wastewater purification. Accordingly, the influence behaviors of the concentration of AGDD feed solution (0.5 mol·L-1-5 mol·L-1) and low-grade heat source temperature (55–95 °C) on hydrogen generation performance and degradation efficiency are simulated and discussed. At a feed concentration of 3 M, hydrogen generation and COD degradation rates achieve their peak values of 0.19 kW and 46.4 %, respectively. At 55 °C, the degradation rate and hydrogen generation reach their highest values, at 47.1 % and 0.2 kW, with the total energy conversion efficiency reaching 1.65 %. Finally, the energy distribution of the entire system is analyzed, and the results show that the salinity gradient energy regeneration process in the AGDD subsystem is the key factor affecting the efficiency of the system. Reducing pump power consumption and non-ohmic resistance in the RED subsystem will effectively improve the energy conversion performance of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时制氢和净化废水:结合气隙扩散蒸馏的创新型闭环反向电渗析系统
气隙扩散蒸馏(AGDD)是一种热蒸馏技术,可将低品位热源转化为盐度梯度能,具有广泛的应用潜力。由于 AGDD 系统在常压下运行,因此可与反向电渗析(RED)技术无缝集成,促进低品位热能向电力、氢气和化学能的转化。本文首次构建了同时实现制氢和废水净化的 AGDD-RED 数学模型。据此,模拟并讨论了 AGDD 料液浓度(0.5 mol-L-1-5 mol-L-1)和低品位热源温度(55-95 °C)对制氢性能和降解效率的影响行为。在进料浓度为 3 M 时,制氢率和 COD 降解率分别达到 0.19 kW 和 46.4 % 的峰值。在 55 °C 时,降解率和制氢率达到最高值,分别为 47.1 % 和 0.2 kW,总能量转换效率达到 1.65 %。最后,分析了整个系统的能量分布,结果表明 AGDD 子系统中的盐度梯度能量再生过程是影响系统效率的关键因素。降低 RED 子系统中泵的功耗和非欧姆阻力将有效提高系统的能量转换性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
期刊最新文献
Stabilizing ignition and enhancing combustion within pre-chamber jet by integrating microwave-assisted ignition A novel high-speed homogenizer assisted process intensification technique for biodiesel production using soya acid oil: Process optimization, kinetic and thermodynamic modelling Development of a novel tool to simulate solar thermal cogeneration plants using small-capacity tower plants The effects of the location of the leading-edge tubercles on the performance of horizontal axis wind turbine Dual-mode arrayed vibration-wind piezoelectric energy harvester
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1