{"title":"Few-shot agricultural pest recognition based on multimodal masked autoencoder","authors":"Yinshuo Zhang , Lei Chen , Yuan Yuan","doi":"10.1016/j.cropro.2024.106993","DOIUrl":null,"url":null,"abstract":"<div><div>Visual recognition methods based on deep convolutional neural networks have performed well in pest diagnosis and have gradually become a research hotspot. However, agricultural pest recognition faces challenges such as few-shot learning, category imbalance, similarity in appearance, and small pest targets. Existing deep learning-based pest recognition methods typically rely solely on unimodal image data, which results in a model whose recognition performance is heavily dependent on the size and quality of the annotated training dataset. However, the construction of large-scale, high-quality pest datasets requires significant economic and technical costs, limiting the practical generalization of existing methods for pest recognition. To address these challenges, this paper proposes a few-shot pest recognition model called MMAE (multimodal masked autoencoder). Firstly, the masked autoencoder of MMAE integrates self-supervised learning, which can be applied to few-shot datasets and improves recognition accuracy. Secondly, MMAE embeds textual modal information on top of image modal information, thus improving the performance of pest recognition by utilizing the correlation and complementarity between the two modalities. The experimental results show that MMAE is the most effective for pest identification compared with the existing excellent models, and the identification accuracy is as high as 98.12%, which is 1.61 percentage points higher than the current state-of-the-art MAE method. The work in this paper shows that the introduction of textual information can assist the visual coder in capturing agricultural pest characterization information at a higher level of granularity, providing a methodological reference for solving the problem of agricultural pest recognition under few-shot conditions.</div></div>","PeriodicalId":10785,"journal":{"name":"Crop Protection","volume":"187 ","pages":"Article 106993"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Protection","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0261219424004216","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Visual recognition methods based on deep convolutional neural networks have performed well in pest diagnosis and have gradually become a research hotspot. However, agricultural pest recognition faces challenges such as few-shot learning, category imbalance, similarity in appearance, and small pest targets. Existing deep learning-based pest recognition methods typically rely solely on unimodal image data, which results in a model whose recognition performance is heavily dependent on the size and quality of the annotated training dataset. However, the construction of large-scale, high-quality pest datasets requires significant economic and technical costs, limiting the practical generalization of existing methods for pest recognition. To address these challenges, this paper proposes a few-shot pest recognition model called MMAE (multimodal masked autoencoder). Firstly, the masked autoencoder of MMAE integrates self-supervised learning, which can be applied to few-shot datasets and improves recognition accuracy. Secondly, MMAE embeds textual modal information on top of image modal information, thus improving the performance of pest recognition by utilizing the correlation and complementarity between the two modalities. The experimental results show that MMAE is the most effective for pest identification compared with the existing excellent models, and the identification accuracy is as high as 98.12%, which is 1.61 percentage points higher than the current state-of-the-art MAE method. The work in this paper shows that the introduction of textual information can assist the visual coder in capturing agricultural pest characterization information at a higher level of granularity, providing a methodological reference for solving the problem of agricultural pest recognition under few-shot conditions.
期刊介绍:
The Editors of Crop Protection especially welcome papers describing an interdisciplinary approach showing how different control strategies can be integrated into practical pest management programs, covering high and low input agricultural systems worldwide. Crop Protection particularly emphasizes the practical aspects of control in the field and for protected crops, and includes work which may lead in the near future to more effective control. The journal does not duplicate the many existing excellent biological science journals, which deal mainly with the more fundamental aspects of plant pathology, applied zoology and weed science. Crop Protection covers all practical aspects of pest, disease and weed control, including the following topics:
-Abiotic damage-
Agronomic control methods-
Assessment of pest and disease damage-
Molecular methods for the detection and assessment of pests and diseases-
Biological control-
Biorational pesticides-
Control of animal pests of world crops-
Control of diseases of crop plants caused by microorganisms-
Control of weeds and integrated management-
Economic considerations-
Effects of plant growth regulators-
Environmental benefits of reduced pesticide use-
Environmental effects of pesticides-
Epidemiology of pests and diseases in relation to control-
GM Crops, and genetic engineering applications-
Importance and control of postharvest crop losses-
Integrated control-
Interrelationships and compatibility among different control strategies-
Invasive species as they relate to implications for crop protection-
Pesticide application methods-
Pest management-
Phytobiomes for pest and disease control-
Resistance management-
Sampling and monitoring schemes for diseases, nematodes, pests and weeds.