Patrick Bründl , Benedikt Scheffler , Christopher Straub , Micha Stoidner , Huong Giang Nguyen , Jörg Franke
{"title":"Geometric deep learning as an enabler for data consistency and interoperability in manufacturing","authors":"Patrick Bründl , Benedikt Scheffler , Christopher Straub , Micha Stoidner , Huong Giang Nguyen , Jörg Franke","doi":"10.1016/j.jii.2025.100806","DOIUrl":null,"url":null,"abstract":"<div><div>Skilled labor shortages and the growing trend for customized products are increasing the complexity of manufacturing systems. Automation is often proposed to address these challenges, but industries operating under the engineer-to-order, lot-size-one production model often face significant limitations due to the lack of relevant data. This study investigates an approach for the extraction of assembly-relevant information, using only vendor-independent STEP files, and the integration and validation of these information in an exemplary industrial use case. The study shows that different postprocessing approaches of the same segmentation mask can result in significant differences regarding the data quality. This approach improves data quality and facilitates data transferability to components not listed in leading ECAD databases, suggesting broader potential for generalization across different components and use cases. In addition, an end-to-end inference pipeline without proprietary formats ensures high data integrity while approximating the surface of the underlying topology, making it suitable for small and medium-sized companies with limited computing resources. Furthermore, the pipeline presented in this study achieves improved accuracies through enhanced post-segmentation calculation approaches that successfully overcome the typical domain gap between data detected solely on virtual models and their physical application. The study not only achieves the accuracy required for full automation, but also introduces the Spherical Boundary Score (SBS), a metric for evaluating the quality of assembly-relevant information and its application in real-world scenarios.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"44 ","pages":"Article 100806"},"PeriodicalIF":10.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X25000305","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Skilled labor shortages and the growing trend for customized products are increasing the complexity of manufacturing systems. Automation is often proposed to address these challenges, but industries operating under the engineer-to-order, lot-size-one production model often face significant limitations due to the lack of relevant data. This study investigates an approach for the extraction of assembly-relevant information, using only vendor-independent STEP files, and the integration and validation of these information in an exemplary industrial use case. The study shows that different postprocessing approaches of the same segmentation mask can result in significant differences regarding the data quality. This approach improves data quality and facilitates data transferability to components not listed in leading ECAD databases, suggesting broader potential for generalization across different components and use cases. In addition, an end-to-end inference pipeline without proprietary formats ensures high data integrity while approximating the surface of the underlying topology, making it suitable for small and medium-sized companies with limited computing resources. Furthermore, the pipeline presented in this study achieves improved accuracies through enhanced post-segmentation calculation approaches that successfully overcome the typical domain gap between data detected solely on virtual models and their physical application. The study not only achieves the accuracy required for full automation, but also introduces the Spherical Boundary Score (SBS), a metric for evaluating the quality of assembly-relevant information and its application in real-world scenarios.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.